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Abstract 

The length-frequency distribution of the dominant species of euryhaline marine Chelon richardsonii, 

estuarine Gilchristella aestuaria and freshwater species Labeobarbus aeneus, Mesobola brevianalis and 

Pseudocrenilabrus philander were investigated seasonally along the Orange River Estuary Continuum 

(OREC) during high-flow and low-flow periods, conducted in eight years, within 15 years (2004-2018). 

We sampled fish using a seine net at 18 sites spanning from the mouth of the estuary up to 35 km upstream. 

The length-frequency distributions of all species did not differ between the high-flow and low-flow season. 

Spatial differentiation in size-frequency distribution of all freshwater taxon was recorded along the river-

estuarine continuum but not for C. richardsonii and G. aestuaria. Total catch-per-unit-effort (CPUE) was 

low for both M. brevianalis and P. philander, and their abundance declined downstream into the estuarine 

region as expected for these two freshwater species. A positive correlation between salinity and fish length 

of all five species was found, demonstrating that juvenile fishes, in particular, freshwater species are less 

salt-tolerant than the adults. It is concluded that the lower OREC provides a vital fish nursery habitat 

suitable for growth and development, particularly for marine C. richardsonii and estuarine G. aestuaria.  
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1. Introduction 

Length-frequency distribution measurements are fundamental to many aspects of fisheries science as they 

aid in understanding the state of the fish population (Pope et al., 2010). Investigating the length-frequency 

distributions (LFDs) of fish species is the first step to evaluating gear selectivity on catches (Andem et al., 

2013). Body size is one of the fundamental traits of an organism (White et al., 2007) and it is a significant 

determinant of both the occurrence and magnitude of species interactions (Woodward et al., 2006; 

Stevenson et al., 2016). The body size is related to many aspects of species ecology, including its 

abundance, lifespan, the spatial scale of resource use and its competitive relationships with other members 

of the food web (Woodward et al., 2006; White et al., 2007).  
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Environmental factors across gradient may further govern the length-frequency distribution of species as 

it correlates strongly with aspects of physiology (Zhang & Payne, 2012). For example, juveniles of most 

fish species are less salt-tolerant than adults (Chervinski, 1984; Lisboa et al., 2015; Sallam et al., 2017), 

this is because early life stages in fish are sensitive to environmental challenges, both natural and 

anthropogenic and if disrupted can lead to mortality (McCormick et al., 2013). With many exceptions, 

several species exhibit spatial variation in body size within and among species across large-scale 

environmental gradient (Roy & Martien, 2001) such as salinity, which influences growth and perturb body 

water and salt homeostasis (i.e. osmoregulation) (Kültz, 2015; Anni et al., 2016). Many freshwater species 

are stenohaline and can tolerate very narrow ranges of salinity. Euryhaline fish, by contrast, tolerate a wide 

range of salinity at some phase in their life cycle (Whitfield, 1998; Kültz, 2015) and this is due to their 

abilities to synthesize new salt-transporting proteins as they move from salt to freshwater and vice versa 

(Kidder III et al., 2006). Euryhaline ability benefits the fish in an environment with fluctuating salinity by 

reducing competition, whereas for non-tolerant species they are a stressor (Smyth & Elliott, 2016). Salinity 

preferences and tolerances of fishes play an important role in structuring fish assemblages within estuaries 

(Whitfield, 1999; Harrison & Whitfield, 2006). 

Consequently, understanding spatial patterns of fishes in an aquatic environment can provide useful 

information on how these patterns are controlled by aspects of the physical environment versus ecological 

interactions among species. These and other environmental variables can be regarded as potential factors 

tapering length-frequency distribution of species in an estuarine environment. From a fisheries perspective, 

the Orange River provides a perfect geographic space to study the size structure and interactions of fishes 

of different origin along a gradient in the estuarine environment.  

 

The Orange River is among the most regulated rivers in the world with several impoundments and inter-

basin transfer schemes (Davies et al., 1993; Snaddon et al., 1999). These anthropogenic impacts, together 

with mining, agriculture and development along the lower part of the river and estuary have modified the 

flow regime downstream (DWAF, 1999). Flow modification has contributed to “seasonal reversals’’ in 

flow and less than 20% of historical MAR (million m3/annum) reaching the estuary (Lamberth, 2003; van 

Niekerk & Turpie, 2012). Despite the threats, the lower Orange River and estuary remain ecologically 

crucial to a variety of aquatic species and provide seasonal nursery habitat and feeding grounds for many 

fish species of marine and freshwater origin (Lamberth, 2003; van Niekerk & Turpie, 2012). Consequently, 

altered flows would have confused behavioural cues for recruitment or emigration and can cause changes 

in catch composition and resource base (ORASECOM, 2013).  

The Orange Estuary presents both horizontal and vertical (stratification) salinity gradients with various 

degrees of mixing between the outward-flowing surface layer of fresh water and the inward-flowing bottom 

layer of saline water (Seaman & van As, 1998). However, the Orange River Estuary Continuum (OREC) 

remains freshwater dominated with the fish assemblages comprising species tolerant of low salinity 

(Lamberth, 2003). This study investigated the spatial and temporal variation in the LFDs of the five 

dominant fish species in the OREC. These species include the southern mullet Chelon richardsonii, 

estuarine roundherring Gilchristella aestuaria, smallmouth yellowfish Labeobarbus aeneus, southern 

mouthbrooder Pseudocrenilabrus philander and the river sardine Mesobola brevianalis. The primary 

objectives of this study are (i) to determine the influence of salinity on the distribution of fishes along the 

river-estuarine continuum, and (ii) to determine the relationship between changes in fish growth and salinity 

tolerance.  
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2. Materials and methods 

Study area 

The lower section of the Vaal-Orange system forms part of the international border between South Africa 

and Namibia. The study area is situated between latitude 28°28'19"S and longitude 16°26'56"E seawards 

(Fig. 1). The study area covered a distance of about 35 km from the mouth of the estuary (site 1) to the 

lower reaches of the river (Site 18, Fig. 1). Within the estuary region, mixing of freshwater from rivers and 

saltwater from the sea were apparent. After that, the system becomes riverine, reflecting a progression from 

marine to estuarine and freshwater influences forming a river-estuary continuum. The Vaal-Orange River 

basin originates in the highlands of Lesotho from which the river flows across central and western South 

Africa and discharges into the Atlantic Ocean at Alexander Bay (Næsje et al., 2007; Ramollo, 2011).  

 

 
Figure 1. Map showing the extends of the Orange River from the mouth. The Orange Estuary extends from 

site 1 to 11, whilst the river section extent from site 12 to 18. 

At the mouth of the estuary, there is a Ramsar site which extends up to 10 km upstream (Williams, 1986). 

Water flows from the upper Orange River remain the largest source of water supplying the lower Orange 

River and its Estuary (Basson & Rossouw, 2003). The surface water area of the estuary is estimated at 600 

ha, whereas the entire wetland area, including salt marsh and floodplain, is approximately 2 000 ha (van 

Niekerk et al., 2003).  

 

Field sampling  

Sampling was conducted biannually, during December - March high-flow season (high-flow from the 

catchment contrasts with the estuary falls within the winter rainfall zone) and August - October low-flow 

season (van Langenhove et al., 1998) for a period of eight years within 15 years (2004 to 2018).  
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A 30 x 2 m beach-seine net with 10 mm stretched mesh size in the centre including the cod-end (bag), 

and 10 m of 15 mm stretched mesh size in each of the wings were used for sampling at 18 fixed sampling 

sites along the OREC. Fish caught at each site were counted, identified to species level (Smith & Heemstra, 

1986; Skelton, 2001) and measured to the nearest mm in total length (TL). Subsequently, fish were released 

alive into the water where possible. The minimum and maximum TL of fishes were determined. Length 

measurements were grouped into length categories of 10 mm interval. The length at maturity in standard 

length (SL) of selected fish species was obtained from the literature (Skelton, 2001; Næsje et al., 2007; 

Froese & Pauly, 2018) and where possible converted to total length (TL) using the length-length table in 

FishBase (Froese & Pauly, 2018).  

 

Table 1. The length at maturity of dominant species collected in the lower Orange River and estuary during the study 

period. 

 

Species Estuary association Length at maturity (mm) Source 

     TL         SL  

Chelon richardsonii Marine estuarine-

opportunist 

244.1 180 Froese & Pauly, 2018 

Labeobarbus aeneus Freshwater straggler ~244.2  M: 200; F: 240 Næsje et al., 2007 

Pseudocrenilabrus 

philander 

Freshwater estuarine-

opportunist 

30.9 25 Froese & Pauly, 2018 

Mesobola brevianalis Freshwater straggler 31.2 30 FL Næsje et al., 2007 

Gilchristella aestuaria Solely estuarine 35.8 30 Froese & Pauly, 2018 

M = Male, F = Female, FL = Fork Length 

 

Salinity (expressed as practical salinity units) was measured at each site, from the middle of the water 

column; the zone between near-surface and near the bottom, using a YSI v6920/EXO 1 multi-parameter 

probe. Sampling sites were categorized into salinity zones based on an adaptation of the Venice system for 

the classification of South African salinity zones in estuaries (Strydom et al., 2003). The following salinity 

zones and salinity ranges in practical salinity units: freshwater = 0–0.49; oligohaline = 0.5–4.9; mesohaline 

= 5.0–17.9; polyhaline = 18.0–29.9; euhaline = 30.0–35.9; hypersaline ≥40. 

 

Data analyses 

 

Assumptions for normality and homogeneity of variance were violated by length-frequency distribution 

data observed along the salinity gradient over the years. As a result, non-parametric statistical tests were 

used. The Mann-Whitney U-test was performed to investigate the differences in mean length of fish on a 

seasonal basis (high-flow and low-flow season). The LFDs of species among salinity zones were 

investigated for each species separately using the non-parametric Kruskal-Wallis test using SPSS v23 

software. Catches were expressed as catch-per-unit-effort (CPUE) and calculated as the number of fishes 

that were collected per net haul. Spearman’s rank correlation analysis was performed to investigate the 

influence of salinity ranges on body size of each species. Graphs of bar charts were plotted using Microsoft 

Excel to show the variation of the length-frequency distribution of species throughout the study period. All 

statistical tests were carried out at the 0.05 alpha level. 
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3. Results 

 

The marine estuarine-opportunist C. richardsonii made up the most significant portion of the catch (70%) 

while freshwater stragglers M. brevianalis was the lowest (2%), Table 2.  

 

Table 2. The number of fish species, mean total length with minimum and maximum length values of fish species 

caught in the Orange River Estuary Continuum, 2004 - 2018.  

 

Common name Scientific name N Mean CPUE 

(mean) 

Min. TL 

(mm) 

Max. TL 

(mm) 

Southern mullet Chelon richardsonii 16 374 33.13 79.01 11 490 

Estuarine 

roundherring 

Gilchristella aestuaria 3 566 57.39 17.63 22 95 

Smallmouth 

yellowfish 

Labeobarbus aeneus 1 913 118.29 9.24 13 520 

River sardine Mesobola brevianalis 475 46.14 2.29 19 66 

Southern 

mouthbrooder 

Pseudocrenilabrus 

philander 

1 035 44.29 5.00 11 140 

 

The majority of fishes caught were mature except for C. richardsonii and L. aeneus. Approximately 99% 

of the total catch of C. richardsonii had an estimated length below the maturity level (~244.08 mm TL; 

Table 1). About 88% of L. aeneus caught during the study period were juveniles (~244.20 mm TL; Table 

1). More than 87% of G. aestuaria, M. brevianalis and P. philander species showed sexual maturity while 

less than 13% did not show sexual maturity. No records of fishes with body size under 10 mm were caught 

in the OREC. Fishes with body size below 10 mm are larvae, and the gear used 10 mm stretched mesh 

misses them. The same holds for all other fish species under 10 mm.  

 

Seasonal and spatial variation in the length-frequency distribution of fishes 

The length-frequency distributions (LFDs) of all five species did not vary significantly seasonally (high-

flow and low-flow) (p > 0.05). As a result, the length-frequency distributions of specific species were 

grouped. The percentage LFDs of all freshwater species differs significantly along the OREC (p < 0.05) 

but not for the marine and estuarine species (p > 0.05). The marine C. richardsonii and estuarine G. 

aestuaria were widely distributed along the entire OREC (Fig. 1). The percentage length-frequency 

curvesof C. richardsonii, G. aestuaria, P. philander and M. brevianalis are classical bell-shape except for 

L. aeneus which indicates a bimodal shape with two cohorts (Fig. 2a, Fig. 2b, Fig. 2c, Fig. 2d, & Fig. 2e). 

 

The distribution of C. richardsonii varied between length classes (H = 144.37, d.f. = 13, p < 0.001), but 

not along the OREC (H = 2.12, d.f. = 5, p > 0.001). The LFDs showed that the fishes of 41 - 50 mm length 

category occurred in the highest percentage in the OREC (Fig. 2a). Similarly, the distribution of G. 

aestuaria varied amongst the different length classes (H = 73.29, d.f. = 9, p < 0.001) but not along the 

length of the river (i.e. salinity gradient; Fig. 3) (H = 4.35, d.f. = 5, p > 0.50).  

 

The distribution of L. aeneus differs significantly amongst the different length classes (H = 85.13, d.f. = 

14, p < 0.001) and along the OREC (H = 23.44, d.f. = 5, p < 0.001). Observed trends in the distribution of 
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L. aeneus amongst length classes showed that fishes of 101 to 200 mm were commonly recorded in highest 

percentage, followed by length classes of 31 - 60 mm (Fig. 2). A few adults were caught in the lower reaches 

of the estuary (i.e. mesohaline waters; Fig. 3), whilst juveniles showed an upstream shift into the river (Fig. 

3). 

 

The percentage length-frequency distribution of M. brevianalis (H = 43.05, d.f. = 7, p < 0.001) and P. 

philander (H = 59.79, d.f. = 10, p < 0.001) differ significantly between length classes and along the OREC 

(H = 11.51, d.f. = 5, p < 0.001); (H = 14.99, d.f. = 5, p < 0.001), respectively. The two freshwater species 

also showed an upstream shift into the freshwater (Fig. 3). For M. brevianalis the highest percentage of 

length-frequency distribution was recorded at 41 - 50 mm length class, followed by 51 - 60 mm and 31 - 

40 mm, respectively (Fig. 2d).  
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Figure 2. The percentage distribution of individual fish species amongst different length classes recorded 

in the Orange River Estuary Continuum, 2004-2018. 
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The percentage LFDs of P. philander was recorded the highest in fishes of 31 - 40 mm, 41 - 50 mm and 

51 - 60 mm length classless, respectively (Fig. 2). The two freshwater species were relatively abundant 

towards the freshwater reaches of the river, and only a few numbers of fish was caught in the estuary, 

especially for M. brevianalis. Mesobola brevianalis and P. philander were not recorded at the mouth of the 

estuary in polyhaline waters (Fig. 3).  

 

 
Figure 3. The percentage length-frequency distribution of fish species recorded at different salinity zones 

in the Orange River Estuary Continuum, 2004 - 2018.  

Sampling sites (Fig. 1) were categorized into salinity zones: freshwater: site 10-18; oligohaline: site 8-9; 

mesohaline: site 3-7; polyhaline: site 1-2 (Fig. 3). All five species showed a significant positive correlation 

between salinity and length (Table 3).  
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Table 3. Spearman’s rank correlation between changes in salinity ranges and body size (total length; TL, mm) of each 

species.  

 

Species Salinity ranges vs TL 

r p-value 

Chelon richardsonii 0.254 0.000*** 

Gilchristella aestuaria 0.304 0.000*** 

Labeobarbus aeneus 0.576 0.000*** 

Pseudocrenilabrus philander 0.453 0.000*** 

Mesobola brevianalis 0.313 0.018** 

 *, **, significant at P < 0.05 and < 0.01.  

 

4. Discussion  

 

Length-frequency distribution analysis plays a significant role in understanding the size structure of fish 

populations (Johnson & Tamatamah, 2013). It is fundamental in estimating growth, recruitment, 

geographical isolation, reproduction and strength of species interactions among fish populations (Begg, 

2005; Johnson & Tamatamah, 2013; Stevenson et al., 2016). Chelon richardsonii and G. aestuaria are 

planktivores, but the latter is also detritivore with a high detritus, benthic diatom intake (Pillay et al., 2012), 

hence their abundance (numerically) in the OREC can be partly related to the availability of planktonic 

food resources associated with chlorophyll-a productivity (Snow, 2013). 

 

The euryhaline C. richardsonii and estuarine G. aestuaria were the two dominant species found widely 

distributed in all salinity zones. Chelon richardsonii can live or survive in wide ranges of salinities (0 – 44), 

varying from fresh to brackish and marine waters (Whitfield et al., 1981; Seaman & van As 1998). The 

dominance of the juvenile component of C. richardsonii present in the OREC indicates that the study area 

is probably providing suitable conditions (i.e. physiological and food resources) for all the stages in the life 

cycle of the species.  

 

The LFDs of G. aestuaria was bell-shaped and symmetrical, with the number of individuals decreasing 

towards the smallest and the largest body size classes (Fig. 2). This observation is typical in most animal 

taxa (Gaston & Blackburn, 2000). Gilchristella aestuaria lives and breeds in estuaries throughout the year 

with a peak in spring and early summer (Haigh & Whitfield, 1993; Skelton, 2001). They are also known to 

breed in freshwater (Skelton, 2001).  

 

The wide distribution of G. aestuaria along the river-estuarine continuum might be attributed to preferred 

salinity range in estuaries which is the River Estuarine Interface (REI zone) of 0 - 10 (Lamberth et al., 

2008). The REI region is defined as that part of an estuary where the river and estuarine waters mix, and 

where the vertically integrated salinity is usually less than 10 (Whitfield & Wood, 2002). Although G. 

aestuaria is not limited by salinity except for hyper-salinity above 40, its length-distribution was 

positively.correlated with salinity in the OREC, demonstrating that juveniles fishes were less salt-tolerant 

to high salinity level. 

 

Freshwater species were numerically abundant in fresh and oligohaline water but poorly represented in 

salinity above mesohaline. Most freshwater species are known to avoid salinity above mesohaline waters 
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due to their inability to develop chloride cells in gill filament epithelia and lack of other osmoregulatory 

adaptation present in euryhaline fishes (Whitfield, 2015). The majority of M. brevianalis and P. philander 

species captured in this study were mature adults from the length category 41 - 50 mm and 31 – 60 mm, 

respectively, this is partly a function of mesh selectivity. There were fewer fishes captured in the lower 

reaches of the estuary compared to those recorded upstream in the river reach. A considerable decline in 

the abundance of M. brevianalis and P. philander downstream into the estuarine region indicates that the 

estuarine environment is not preferred habitat for these two freshwater species.  

 

The absence of small size length (<10 mm) of L. aeneus captured in the OREC is due to mesh selectivity; 

hence there is ample spawning habitat (gravel beds) in the upper reaches of the river from site 10 - 18 (~10 

- 35 km; Fig. 1). When L. aeneus are ready to spawn, they migrate upstream to the spawning sites, where 

there is running water over the gravel (Jubb, 1962), but has also been observed in still waters over gravel 

beds in Hardap dam, Namibia (Groenewald, 1951 as cited in Gaigher, 1976). Breeding fish make hollows 

in gravel with their snouts and tail fins, into which the eggs are deposited (Groenewald, 1951). Fishes with 

length categories between 101 to 200 mm were commonly recorded, followed by length classes of 31 – 60 

mm (possibly spawned in the last month or two before sampling). Altered flow regime associated with 

inadequate water management of the river system may be impacting the fish species abundance in the 

OREC. 

 

No records of L. aeneus were captured at the proximity of the estuary mouth, particularly in polyhaline 

and euhaline waters (Fig. 3). Labeobarbus aeneus predominantly inhabits shallow (< 1 m) fast-flowing 

habitats (Eccles, 1986) and its distribution is restricted by water temperature (De Villiers & Ellender, 2007). 

Its CPUE amplified upstream into the river where their catches remained relatively the same. Therefore, 

during low-flow, its distribution is governed by the intrusion of cold seawater at the mouth of the estuary. 

Also, L. aeneus penetration into estuaries from the rivers is based on their salinity tolerance (Whitfield, 

1998), hence this can be another reason for the absence of species (i.e. mostly juveniles) close to the mouth 

of the estuary. However, during high-flow periods, L. aeneus has been recorded at the mouth and 

occasionally caught by anglers fishing the surf for kob (Argyrosomus inodorus), the surf is often low salinity 

at those times (S.J Lamberth, personal communication, August 11, 2019).  

 

This study supports evidence from other studies (e.g. Chervinski, 1984; Lisboa et al., 2015; Sallam et al., 

2017) confirming a positive correlation between salinity and fish length, demonstrating that juvenile fishes 

are less salt-tolerant than the adults (Table 3). This is because juvenile fish are sensitive to environmental 

challenges, resulting in physiological limitations (McCormick et al., 2013). Salinity is regarded as a critical 

environmental factor for all aquatic organisms (Whitfield, 1999; Harrison & Whitfield, 2006; Smyth & 

Elliot, 2016), responsible for causing salinity stress to fishes and, if not compensated for, it interferes with 

physiological homeostasis and routine biological processes (Kültz, 2015). As a result, most stenohaline 

fishes are limited to environments of stable salinity while euryhaline fishes inhabit environments with 

variable salinity (Wurts, 1998; Kültz, 2015) 

Moreover, salinity can act synergistically or antagonistically with other environmental stressors, 

producing a dynamic and changing environment (Smyth & Elliott, 2016). For example, in most South 

African estuaries, temperature and salinity both play a substantial role in determining the biogeographical 

distribution of fishes (Harrison & Whitfield, 2006) and structuring fish communities (Whitfield, 1999).  

 



FP Nashima— Spatio-temporal variation in length-frequency and salinity tolerance of dominant fishes 

Overall declining or limited individuals with body sizes below 10 mm caught in the OREC may be 

influenced by the mesh size, which determines the size of fish seined. The bag (cod-end) and stretched 

mesh of seine net used were 10 mm. Another influential factor is predation which is the principal cause of 

mortality (Stevenson et al., 2016). As with most teleost’s, the mortality rate is high and variable during the 

early life stage of the species (Olafsson et al., 1994; Houde, 2002) and after that, the relative strength of the 

size class is more or less set, it then decreases through a relatively constant natural mortality, but does not 

change dramatically. The size of the prey is fundamental to predation risk, and most predators can only 

ingest prey up to a specific maximum size (Kerfoot & Sih, 1987; Nilsson & Brönmark, 2000). These and 

other dynamics may explain the observed length-frequency distribution patterns of species in the OREC. 

Overlapping length-frequency distribution observed among the dominant species in the OREC may suggest 

possible resource partitioning. Feeding ecology study using stable isotope analysis revealed overlap in the 

feeding behaviour of these species (Nashima et al., 2020), with possibilities that these species are exploiting 

food resources which may be derived from the same or similar food sources.  

 

This study precluded cohort analysis and precise estimates of spawning times or migration of these 

populations due to low sampling frequency (twice annually). For the entire study period, there was no high-

flow event during any of the sampling trips. This and other factors could explain the non-significant 

observation in the length-frequency distribution of fishes between seasons. At least part of this can be 

attributed to regulation of the river system, in particular, the Gariep and Vanderkloof dams (Anderson et 

al., 2003) which significantly reduced the amount of water flowing downstream to the estuary.  

 

5. Conclusion 

 

This study highlighted that marine C. richardsonii and estuarine G. aestuaria can secure refuge in the 

lower OREC. This capacity is, however, limited to freshwater taxa which were abundant in the upper 

reaches of the river. The movement of freshwater species into the lower reaches of the estuary is likely to 

have been influenced by the inability to tolerate high salinity. There is no seasonal variation in the length-

frequency distribution of any of the species considered. This could be attributed to the regulation of the 

river system, which significantly reduced the amount of water flowing downstream to the estuary. Spatial 

differentiation in size-frequency distribution varied for all freshwater species (i.e. L. aeneus, M. brevianalis 

and P. philander) but not for the marine C. richardsonii and estuarine G. aestuaria species along the river-

estuarine continuum. Findings of this study confirmed a positive correlation between salinity and fish 

length, demonstrating that juveniles of selected fish, in particular, freshwater species are less salt-tolerant 

to high salinity level. Small-sized individuals of < 10 mm of all species in the OREC were under-

represented but most likely due to gear selectivity, not predation. Future research should categorise the 

length-frequency distribution of fishes based on sexes as species may have different maturity sizes. 
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