Characterization of A_{8} by 3 -Centralizers

A. A. Ligonnah ${ }^{1 *}$
${ }^{1}$ Department of Mathematics, University of Botswana
Private Bag 0022, Gaborone, Botswana

Received: 28th May, 2013. Accepted: 25th August, 2014.

Abstract

Let G be a finite group containing a subgroup H isomorphic to an alternating group, A_{n}, such that G satisfies the 3 -cycle property, namely 'for a 3-cycle $x \in H$, if $x^{g} \in H$ for any $g \in G$, then $g \in H$ '. 'It is proved that for $n=8, G$ is isomorphic to $L K$, an extension of an elementary Abelian 2-group L by a group K isomorphic to either A_{8} or $S L(5,2)$. If G is simple, it is shown that G is isomorphic to A_{8} or $S L(5,2)$.

Keywords: Classification, Finite Group Theory, Alternating Group
Mathematics Subject Classification (2010): Primary 55P62; Secondary 55M35

ISTJN 2014; 4:51-61.

1 Introduction

We investigate a finite group G which contains a subgroup H isomorphic to A_{8}, the alternating group on 8 letters, and has the 3 -cycle property, namely:

Definition 1 (3-Cycle Property) Let $x \in H$ be a 3-cycle. Then, if $x^{g} \in H$ for any $g \in G$, we have $g \in H$.

[^0]Just as the cases for $n=5$ and 6 [9], if $\varphi: H \rightarrow A_{8}$ is the required isomorphism, we shall identify the elements of H with their images under φ; so that we can speak of an element of H being a 3 -cycle.

We let $x \in H$ be the pre-image of (123) in A_{8} in the isomorphism of H to A_{8} and $y \in H$ be the pre-image of (456) in A_{8}. Then the 3-cycle property is equivalent to the hypotheses:
(i) The centralizer of x in G is contained in H;
(ii) The element x is not conjugate to the element $x y$ in G.

The results for $n=5$ and 6 have been given in earlier paper [9]. In this case for $n=8$, the method of proof relies heavily on the Atlas of Finite Groups [2]. The case for $n=7$ and G is simple has been proved in [10].
We prove the result in this paper by first proving when G is simple and then apply the general p-cycle property results, Proposition 1 in [9], to complete the proof.

2 Some Results on Group Classification

We give the results that we keep on referring in this paper for easy access.
Theorem 2.1[G.Mullineux, [?]]
Suppose $n \geq 9$ and A_{n} lies in the finite group G with the 3 -Cycle Property. Then G possesses a normal elementary Abelian 2-subgroup X such that $X \cap A_{n}=1$ and G is a semi-direct product $X \times A_{n}$.

Theorem 2.2[Feit-Thompson, [4]
Let G be a finite non Abelian group with a self-centralizing subgroup of order 3. Then G is isomorphic to one of the following:
(i) $M D_{6}$, a semi-direct product, where M is a nilpotent group, D_{6} is a dihedral group of order 6;
(ii) $Y A_{5}$, a semi-direct product, where Y is an elementary Abelian 2-group;
(iii) $\operatorname{PSL}(2,7)$.

We have the following corollary to the Feit-Thompson theorem given above:

Corollary 2.2

If G is a finite simple group with a self-centralizing element of order 3, then G is isomorphic to A_{5} or $P S L(2,7)$.

Theorem 2.3[Bryson, [3]
Let G be a finite group with an element of order 3 whose centralizer is of order 9. Suppose also that G has an Abelian Sylow 3 -subgroup of order 9 and has two classes of elements of order 3. Then G is isomorphic to either A_{6} or A_{7}.

Theorem 2.4[Proposition 4.1 [13]]
Let G be a finite group with a normal 2-subgroup Q such that G / Q is isomorphic to $\operatorname{PSL}\left(2,2^{n}\right), n \geq 2$, and suppose an element of G of order 3 acts fixed-point-freely on Q. Then
(i) Q is elementary Abelian and is the direct product of minimal normal subgroups of G each of order $2^{2 n}$.
(ii) The Sylow 2-subgroup P of G is of class 2, and if $|Q|>2^{2 n}, Q$ is the only Abelian subgroup of P of index 2^{n}.

Theorem 2.5[Proposition 4.2 in [13]]
Let G be a finite group, H a normal subgroup of G with G / H isomorphic to $\operatorname{PSL}\left(2,2^{n}\right)$, $n \geq 2$. Suppose an element t of G of order 3 acts fixed-point-freely on H. Then H is an elementary Abelian 2-group.

3 The Proof of the main Result

From now on, G will be a finite simple group containing a subgroup H isomorphic to A_{8}, and x in H is the pre-image of (123) in A_{8}, y in H is the pre-image of (567) in A_{8} and conditions
(i) $C_{G}(x)<H$,
(ii) x is not conjugate to $x y$ in G;
are satisfied.

We establish the following main result:

Theorem 3.1

Let G be a finite simple group containing a subgroup H isomorphic to A_{8}. Let x in H be the pre-image of (123) A_{8} and y in H be the pre-image of (567). Assume
(i) $C_{G}(x) \leq H$;
(ii) x is not conjugate to $x y$ in G.

Then G is isomorphic to A_{8} or $S L(5,2)$.

Corollary 3.1

Let G be a finite group containing a subgroup $H \cong A_{8}$ such that G satisfies the 3-cycle property. Then G is an extension of an elementary Abelian 2 -group F by a group L isomorphic to either A_{8} or $S L(5,2)$.

Lemma 3.1

If $H_{0}<H$, where $H \leq G$ with $H \simeq A_{8}$ and $x \in H_{0}$, then $N_{G}\left(H_{0}\right)<H$. If $P=\langle x, y\rangle$, then P is a Sylow 3-subgroup of G.

Proof

For any $g \in N_{G}\left(H_{0}\right), x^{g} \in H$, so that x and x^{g} must be conjugate in H by hypothesis (ii) of the theorem. Thus $x^{g}=x^{h}$ for some $h \in H$, so that $x^{g h^{-1}}=x$. This implies that $g h^{-1} \in C_{G}(x)<H$ by hypothesis (i). Since $h \in H, g \in H$ also and hence $N_{G}\left(H_{0}\right)<H$. In particular, $N_{G}(P)<H$ so that P is a Sylow 3 -subgroup of its own normalizer, hence it is a Sylow 3-subgroup of G.

4 A Survey of The Finite Simple Groups and Proof of the Theorem

We will make use of The Atlas of Finite Simple Groups, [2], that gives the list of finite simple groups and their properties that we can use to check which possibilities there are for G.

The finite simple groups are to be found among:
(1) The Cyclic Groups of Prime Order;
(2) The alternating group of degree at least five;
(3) The 26 Sporadic Simple Groups;
(4) The Chevalley groups.

Indeed, G is not cyclic so that (1) above does not hold. The finite simple group G we consider can be one of the alternating groups, one of the sporadic groups or one of the Chevalley groups. We have to consider each case at a time.

Proposition 2 The finite simple group G is not one of the Sporadic groups.

Proof. The 26 sporadic groups are listed below, from [2] page (viii), together with their corresponding orders:

LIST OF ALL SPORADIC GROUPS

Group	Order	Investigator
M_{11}	$2^{4} \cdot 3^{2} .5 .11$	Mathieu
M_{12}	$2^{6} .3^{3} .5 .11$	Mathieu
M_{22}	$2^{7} .3^{2}$.5.7.11	Mathieu
M_{23}	$2^{7} \cdot 3^{2} \cdot 5 \cdot 7 \cdot 11 \cdot 23$	Mathieu
M_{24}	$2^{10} .3^{3} \cdot 5 \cdot 7.11 .23$	Mathieu
J_{2}	$2^{7} .3^{3} .5^{2} .7$	Hall, Janko
Suz	$2^{13} \cdot 3^{7} \cdot 5^{2} \cdot 7 \cdot 11.13$	Suzuki
HS	$2^{9} .3^{2} \cdot 5^{3} \cdot 7.11$	Higman,Sims
McL	$2^{7} .3^{6} .5^{3} \cdot 7 \cdot 11$	McLaughlin
Co_{3}	$2^{10} .3^{7} \cdot 5^{3} \cdot 7 \cdot 11.23$	Conway
Co_{2}	$2^{18} .3^{6} .5^{3} .7^{2} .11 .23$	Conway
Co_{1}	$2^{21} .3^{9} \cdot 5^{4} \cdot 7^{2} \cdot 11.13 .23$	Conway, Leech
He	$2^{10} \cdot 3^{3} \cdot 5^{2} \cdot 7^{3} \cdot 17$	Held/Higman, Mckay
$F i_{22}$	$2^{17} .3^{9} \cdot 5^{2} \cdot 7 \cdot 11.13$	Fischer
$F i_{23}$	$2^{18} .3^{13} \cdot 5^{2} \cdot 7 \cdot 11.13 .17 .13$	Fischer
$F i_{24}$	$2^{21} .3^{16} \cdot 5^{2} \cdot 7^{3} \cdot 11 \cdot 13 \cdot 17.23 .29$	Fischer
$H N$	$2^{14} \cdot 3^{6} \cdot 5^{6} \cdot 7 \cdot 11.19$	Harada, Norton/Smith
Th	$2^{15} .3^{10} .5^{3} \cdot 7^{2} \cdot 13.19 .31$	Thompson/Smith
B	$2^{41} .3^{13} \cdot 5^{6} \cdot 7^{2} \cdot 11 \cdot 13 \cdot 17 \cdot 19.23 \cdot 31.47$	Fischer/Sims, Leon
M	$2^{46} .3^{20} .5^{9} \cdot 7^{6} .11^{2} .13^{3} .17$.	
	19.23.29.31.41.47..59.71	Fischer
J_{1}	$2^{3} \cdot 3 \cdot 5.7 .11 .19$	Janko
$O^{\prime} N$	$2^{9} .3^{4} .5 .11 .19 .31$	O^{\prime} Nan
J_{3}	$2^{7} .3^{5} .5 .17 .19$	Janko/Higman, Mckay
Ly	$2^{8} .3^{7} \cdot 5^{6} \cdot 7 \cdot 11 \cdot 31 . .37 .67$	Lyon/Sims
Ru	$2^{14} .3^{3} .5^{3} . .7 .13 .29$	Rudvalis/Conway,Wales
J_{4}	$2^{21} .3^{3} \cdot 5 \cdot 7 \cdot 11^{3} \cdot 23 \cdot 29.31 \cdot 37 \cdot 43$	Janko/Norton

From the table, by considering the orders, the only groups with Sylow 3-subgroups of order 9 are M_{11}, M_{22}, M_{23} and $H S . M_{11}$ is too small to contain H so is out. This leaves us with M_{22}, M_{23} and $H S$.

Considering maximal subgroups, M_{22} contains $L_{3}(4) 2^{4}: A_{6} A_{7}$ and 4 other groups of order less than $\left|A_{7}\right|$ as maximal subgroup as shown in [2] page 39. The order of $2^{4}: A_{6}$ is 5760 , orders of A_{7} and the 4 other groups are too small for them to contain an isomorphic
copy of A_{8}. The group $L_{3}(4)$ has order 2160 which equal to $\left|A_{8}\right|$. Let $S \in S y l_{2}\left(L_{3}(4)\right)$.Then

$$
\left\{\left.\left(\begin{array}{ccc}
1 & 0 & 0 \\
a & 1 & 0 \\
c & b & 1
\end{array}\right) \right\rvert\, a, b, c \in G F(4)\right\}
$$

Let

$$
A=\left(\begin{array}{lll}
1 & 0 & 0 \\
a & 1 & 0 \\
c & b & 1
\end{array}\right), B=\left(\begin{array}{ccc}
1 & 0 & 0 \\
a^{\prime} & 1 & 0 \\
c^{\prime} & b^{\prime} & 1
\end{array}\right)
$$

Then

$$
A B=\left(\begin{array}{ccc}
1 & 0 & 0 \\
a+a^{\prime} & 1 & 0 \\
c+c^{\prime}+b b^{\prime} & b+b^{\prime} & 0
\end{array}\right)
$$

and

$$
[A, B]=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
b^{\prime} a-b a^{\prime} & 0 & 1
\end{array}\right) \in Z(S)
$$

So $\operatorname{cl}(S)=2$.

On the other hand, $T=\langle(13)(24),(57)(68),(12)(56),(15)(26)(37)(48)\rangle$ is a Sylow 2-subgroup of A_{8}. Let $\sigma=(13)(24), \tau=(12)(56)$ and $\varrho=(15)(26)(37)(48)$. Then $[\sigma, \tau]=(13)(24)(23)(14)=$ $(12)(34)$ and $[\sigma, \tau, \varrho]=(12)(34)(56)(78)$, so $c l(T) \geq 3$. Hence $L_{3}(4) \not \equiv A_{8}$. This implies that M_{22} does not contain an isomorphic copy of A_{8} as none of its maximal subgroups contains an isomorphic copy of A_{8}.

The group M_{23} contains A_{8} as a maximal subgroup, but the elements of order 3 in M_{23} have only one conjugate class from [2], page 71. Hence the elements x and $x y$ become fused in the bigger group M_{23}; so that M_{23} does not satisfy the hypothesis of the theorem.

The Higman-Sims group $H S$ contains S_{8} as a maximal subgroup, as is shown in [2] page 80, so $H S$ contains A_{8} inside S_{8}. This
implies $C_{G}(x) \nsubseteq A_{8}$, hence $H S$ does not satisfy the hypothesis put on G.

Hence, G is not a sporadic group.

Proposition 3 The finite simple group G is not one of the Chevalley groups, other than $L_{4}(2) \cong A_{8}$ or $S L(5,2)$.

Proof. The list and orders of the finite simple groups are given explicitly in pages 239 through 242 in [2]. The Chevalley groups are listed, and upon checking their orders, the only ones with orders divisible by $\left|A_{8}\right|$, apart from A_{8} and $S L(5,2)$, and have a Sylow 3-subgroup of order 9 are:

CHEVALLEY GROUPS OF ORDERS DIVISIBLE BY $\left|A_{8}\right|$, APART FROM A_{8} AND $S L(5,2)$, WITH SYLOW-3 SUBGROUP OF ORDER 9.

Group	Order
$L_{2}\left(2^{6}\right)$	$2^{6} \cdot 3^{2} \cdot 5 \cdot 7 \cdot 13$
$S_{4}(7)$	$2^{8} \cdot 3^{2} \cdot 5^{2} \cdot 7^{2}$
$L_{3}(16)$	$2^{12} \cdot 3^{2} \cdot 5^{2} \cdot 7 \cdot 13 \cdot 17$
$S_{4}(13)$	$2^{6} \cdot 3^{2} \cdot 5 \cdot 7^{2} \cdot 13^{4} \cdot 17$
$U_{4}(7)$	$2^{10} \cdot 3^{2} \cdot 5^{2} \cdot 7 \cdot 11^{6} \cdot 19 \cdot 61$
$L_{4}(11)$	$2^{7} \cdot 3^{2} \cdot 5^{3} \cdot 7 \cdot 11^{6} \cdot 19 \cdot 61$
$U_{5}(7)$	$2^{15} \cdot 3^{2} \cdot 5^{2} \cdot 7^{10} \cdot 11 \cdot 19 \cdot 43$

The group $L_{2}\left(2^{6}\right)$ has cyclic Sylow 3-subgroups of order 9 , hence it does not satisfy the hypothesis that the group we consider has an elementary Abelian Sylow 3-subgroup P.

Every two elements in $S L_{3}\left(2^{4}\right) / Z\left(S L_{3}\left(2^{4}\right)\right)$ of order 3 are conjugate, being similar to a diagonal matrix

$$
\left(\begin{array}{ccc}
\lambda^{-1} & 0 & 0 \tag{1}\\
0 & \lambda & 0 \\
0 & 0 & 1
\end{array}\right)
$$

where $\lambda \in G F\left(2^{4}\right)$ is a primitive root of unity.

Let $Q \in S y l_{3}\left(S L_{3}\left(2^{4}\right)\right)$. Then Q is extra-special of exponent 3 and order 3^{2}, and Q is a conjugate of

$$
\left\langle\left(\begin{array}{ccc}
\lambda^{-1} & 0 & 0 \tag{2}\\
0 & \lambda & 0 \\
0 & 0 & 1
\end{array}\right),\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right)\right\rangle
$$

So $L_{3}\left(2^{4}\right)$ has only one conjugate class of elements of order 3.

Let V be the 4-dimensional vector space over $G F(11)$. If $x \in S L_{4}(11)$ and $|x|=3$, then either $\operatorname{dim}[V, x]=2$ and $[V, x]$ is an irreducible $\langle x\rangle$ - module, or V is the sum of two 2-dimensional irreducible $\langle x\rangle$-modules. In the first case,

$$
C_{S L_{4}(11)}(x)
$$

contains a subgroup of $S L_{2}$ (11). In the second case,

$$
C_{G L_{4}(11)}(x) \cong G L_{2}\left(11^{2}\right)
$$

In either case, centralizers of elements of order 3 in $S L_{4}(11)$ have orders divisible by 11. This carries over to $L_{4}(11)$, so that $L_{4}(11)$ does not satisfy the hypothesis that $C_{G}(x) \leq H$ which is isomorphic to A_{8}.

Let $G \in\left\{S_{4}(7), S_{4}(13), U_{4}(7), U_{5}(7)\right\}$. We know that, from [8], Theorem 8.8, $U_{2}(q) \cong L_{2}(q) \cong$ $S L_{2}(q)$. Letting $q \in\{7,13\}$, the groups $S p_{4}(q), S U_{4}(q)$ and $S U_{5}(q)$ respectively all have a subgroup $U \cong S L_{2}(q) \times S L_{2}(q)$ which contains a full Sylow 3-subgroup. This implies that $C_{G}(x)$ contains a subgroup of $L_{2}(q)$ whenever $x \in G$ and $|x|=3$. This makes $C_{G}(x) \not \leq H$ isomorphic to A_{8}, eliminating these groups. This completes the proof of the proposition.

The proof of the theorem is complete as we have shown that the finite simple group G satisfying the hypotheses of the theorem is either A_{8} or $S L(5,2)$ by applying the results in The Atlas of Finite Simple Groups, [2].

Corollary 4 Let G be a finite group containing a subgroup H with $H \cong A_{8}$ such that G satisfies the 3-cycle property. Then G is isomorphic $Q . L$, an extension of an elementary Abelian 2-group Q by a group L isomorphic to A_{8} or $S L(5,2)$.

Proof. Using the similar argument and results as in Corollary 6.2, with

$$
\bar{G}=G / O_{3^{\prime}}(G) ;
$$

and $H \leq G$ with $H \cong A_{8}$. Then $\bar{H} \leq \bar{G}$. By Theorem 5.3, $O_{3^{\prime}}(G)=F(G)$ and \bar{G} is nonAbelian simple group. We have $\bar{H} \leq \bar{G}, C_{G}(\bar{x}) \leq \bar{H}$ and \bar{x} is not conjugate to $\overline{x y}$ in \bar{G}. By Theorem 8.1, $\bar{G} \cong A_{8}$ or $\bar{G} \cong S L(5,2)$. This means that $G / F(G) \cong A_{8}$ or $G / F(G) \cong S L(5,2)$. Any element of order 3 in A_{8} lies in a subgroup isomorphic to A_{5}, and A_{5} acts on the group $F(G)$ with the element of order 3 acting fixed-point-freely. By Stewart's result, (Theorem 4.7), $F(G)$ is an elementary Abelian 2-group Q. Whence, $G / Q \cong A_{8}$ or $G / Q \cong S L(5,2)$. This implies $G \cong Q . A_{8}$ or $G \cong Q . S L(5,2)$, an extension of an elementary Abelian 2-group Q by either A_{8} or $S L(5,2)$.

References

[1] M. Aschbacher, Finite Group Theory, Cambridge University Press, 1986.
[2] J.M. Conway, R.T. Curtis, S.P. Norton, R.A. Parker and R.A. Wilson, Atlas of Finite Simple Groups, Claredon Press-Oxford, 1985.
[3] N. Bryson, Characterization of Finite Simple Groups With Abelian Sylow 3-subgroup of Order 9, D.Phil Thesis, Oxford University, 1974.
[4] W. Feit, J. Thompson, Finite Groups which Contain a Self-Centralizing Cycle of Order 3, Nagoya Math. J. 21-22 (1962), 185-197.
[5] G. Glauberman, Central Elements in Core-Free Groups, J. Algebra 4 (1966), 403-419.
[6] D. Gorenstein, Finite Groups, Harper and Row Publishers, New York, 1968.
[7] G. Higman, Odd Characterization of the Finite Simple Groups, Lecture Notes, Univ. of Michigan, 1968.
[8] B. Huppert, Group Theory 1, Band 134 Springer-Verlang Berlin-New York, 1967.
[9] A. Liggonah, Character of A_{n}, for $n=5,6$ by 3-Centralizers, Int. Sci.Technol. J., vol3, Issue 1, 2014
[10] A. Liggonah, A Weak Embedding Property of A_{7}, J. Algebra, 48(1977), 47-57
[11] G. Mullineux, Characterization of A_{n} by Centralizers of 3-cycles, Q. J. Math. Oxford (2), 29 (1978), 263-279.
[12] Stephen D. Smith and P. Tyrer, On Finite Groups With Certain Sylow Normalizer, I, II, J. Algebra 26 (1973), 343-364, 366-367.
[13] W. B. Stewart, Groups Having Strongly Self-centralizing 3-Subgroups, Proc. Lond. Math. Soc. 26 (1970), 653-680.

[^0]: *Corresponding author - E-mail: liggonah@mopipi.ub.bw

