Characterization of A_8 by 3-Centralizers

A. A. Ligonnah^{1*}

¹Department of Mathematics, University of Botswana Private Bag 0022, Gaborone, Botswana

Received: 28th May, 2013. Accepted: 25th August, 2014.

Abstract

Let G be a finite group containing a subgroup H isomorphic to an alternating group, A_n , such that G satisfies the 3-cycle property, namely 'for a 3-cycle $x \in H$, if $x^g \in H$ for any $g \in G$, then $g \in H$.'It is proved that for n = 8, G is isomorphic to LK, an extension of an elementary Abelian 2-group L by a group K isomorphic to either A_8 or SL(5,2). If G is simple, it is shown that G is isomorphic to A_8 or SL(5,2).

Keywords: Classification, Finite Group Theory, Alternating Group

Mathematics Subject Classification (2010): Primary 55P62; Secondary 55M35

ISTJN 2014; 4:51-61.

1 Introduction

We investigate a finite group G which contains a subgroup H isomorphic to A_8 , the alternating group on 8 letters, and has the 3-cycle property, namely:

Definition 1 (3-Cycle Property) Let $x \in H$ be a 3-cycle. Then, if $x^g \in H$ for any $g \in G$, we have $g \in H$.

^{*}Corresponding author - E-mail: liggonah@mopipi.ub.bw

Just as the cases for n = 5 and 6 [9], if $\varphi : H \to A_8$ is the required isomorphism, we shall identify the elements of H with their images under φ ; so that we can speak of an element of H being a 3-cycle.

We let $x \in H$ be the pre-image of (123) in A_8 in the isomorphism of H to A_8 and $y \in H$ be the pre-image of (456) in A_8 . Then the 3-cycle property is equivalent to the hypotheses: (i) The centralizer of x in G is contained in H;

(ii) The element x is not conjugate to the element xy in G.

The results for n = 5 and 6 have been given in earlier paper [9]. In this case for n = 8, the method of proof relies heavily on the Atlas of Finite Groups [2]. The case for n = 7 and G is simple has been proved in [10].

We prove the result in this paper by first proving when G is simple and then apply the general *p*-cycle property results, Proposition 1 in [9], to complete the proof.

2 Some Results on Group Classification

We give the results that we keep on referring in this paper for easy access.

Theorem 2.1[G.Mullineux, [?]]

Suppose $n \ge 9$ and A_n lies in the finite group G with the 3-Cycle Property. Then G possesses a normal elementary Abelian 2-subgroup X such that $X \cap A_n = 1$ and G is a semi-direct product $X \times A_n$.

Theorem 2.2[Feit-Thompson, [4]]

Let G be a finite non Abelian group with a self-centralizing subgroup of order 3. Then G is isomorphic to one of the following:

- (i) MD_6 , a semi-direct product, where M is a nilpotent group, D_6 is a dihedral group of order 6;
- (ii) YA_5 , a semi-direct product, where Y is an elementary Abelian 2-group;
- (iii) PSL(2,7).

We have the following corollary to the Feit-Thompson theorem given above:

Corollary 2.2

If G is a finite simple group with a self-centralizing element of order 3, then G is isomorphic to A_5 or PSL(2,7).

Theorem 2.3[Bryson, [3]]

Let G be a finite group with an element of order 3 whose centralizer is of order 9. Suppose also that G has an Abelian Sylow 3 -subgroup of order 9 and has two classes of elements of order 3. Then G is isomorphic to either A_6 or A_7 .

Theorem 2.4[Proposition 4.1 [13]]

Let G be a finite group with a normal 2-subgroup Q such that G/Q is isomorphic to $PSL(2,2^n)$, $n \ge 2$, and suppose an element of G of order 3 acts fixed-point-freely on Q. Then

- (i) Q is elementary Abelian and is the direct product of minimal normal subgroups of G each of order 2^{2n} .
- (ii) The Sylow 2-subgroup P of G is of class 2, and if $|Q| > 2^{2n}$, Q is the only Abelian subgroup of P of index 2^n .

Theorem 2.5[Proposition 4.2 in [13]]

Let G be a finite group, H a normal subgroup of G with G/H isomorphic to $PSL(2,2^n)$, $n \ge 2$. Suppose an element t of G of order 3 acts fixed-point-freely on H. Then H is an elementary Abelian 2-group.

3 The Proof of the main Result

From now on, G will be a finite simple group containing a subgroup H isomorphic to A_8 , and x in H is the pre-image of (123) in A_8 , y in H is the pre-image of (567) in A_8 and conditions

(i) C_G(x) < H,
(ii) x is not conjugate to xy in G; are satisfied.

We establish the following main result:

Theorem 3.1

Let G be a finite simple group containing a subgroup H isomorphic to A_8 . Let x in H be the pre-image of (123) A_8 and y in H be the pre-image of (567). Assume

(i) $C_G(x) \leq H$;

(ii) x is not conjugate to xy in G.

Then G is isomorphic to A_8 or SL(5,2).

Corollary 3.1

Let G be a finite group containing a subgroup $H \cong A_8$ such that G satisfies the 3-cycle property. Then G is an extension of an elementary Abelian 2-group F by a group L isomorphic to either A_8 or SL(5,2).

Lemma 3.1

If $H_0 < H$, where $H \le G$ with $H \simeq A_8$ and $x \in H_0$, then $N_G(H_0) < H$. If $P = \langle x, y \rangle$, then P is a Sylow 3-subgroup of G.

Proof

For any $g \in N_G(H_0)$, $x^g \in H$, so that x and x^g must be conjugate in H by hypothesis (ii) of the theorem. Thus $x^g = x^h$ for some $h \in H$, so that $x^{gh^{-1}} = x$. This implies that $gh^{-1} \in C_G(x) < H$ by hypothesis (i). Since $h \in H$, $g \in H$ also and hence $N_G(H_0) < H$. In particular, $N_G(P) < H$ so that P is a Sylow 3-subgroup of its own normalizer, hence it is a Sylow 3-subgroup of G.

4 A Survey of The Finite Simple Groups and Proof of the Theorem

We will make use of The Atlas of Finite Simple Groups, [2], that gives the list of finite simple groups and their properties that we can use to check which possibilities there are for G.

Characterization of A_8 by 3-Centralizers

The finite simple groups are to be found among:

(1) The Cyclic Groups of Prime Order;

- (2) The alternating group of degree at least five;
- (3) The 26 Sporadic Simple Groups;
- (4) The Chevalley groups.

Indeed, G is not cyclic so that (1) above does not hold. The finite simple group G we consider can be one of the alternating groups, one of the sporadic groups or one of the Chevalley groups. We have to consider each case at a time.

Proposition 2 The finite simple group G is not one of the Sporadic groups.

Proof. The 26 sporadic groups are listed below, from [2] page (viii), together with their corresponding orders:

LIST OF ALL SPORADIC GROUPS

Group	Order	Investigator
M_{11}	$2^4.3^2.5.11$	Mathieu
M_{12}	$2^6.3^3.5.11$	Mathieu
M_{22}	$2^7.3^2.5.7.11$	Mathieu
M_{23}	$2^7.3^2.5.7.11.23$	Mathieu
M_{24}	$2^{10}.3^3.5.7.11.23$	Mathieu
J_2	$2^7.3^3.5^2.7$	Hall, Janko
Suz	$2^{13}.3^7.5^2.7.11.13$	Suzuki
HS	$2^9.3^2.5^3.7.11$	Higman, Sims
McL	$2^7.3^6.5^3.7.11$	McLaughlin
Co_3	$2^{10}.3^7.5^3.7.11.23$	Conway
Co_2	$2^{18}.3^6.5^3.7^2.11.23$	Conway
Co_1	$2^{21}.3^9.5^4.7^2.11.13.23$	Conway, Leech
He	$2^{10}.3^3.5^2.7^3.17$	Held/Higman, Mckay
Fi_{22}	$2^{17}.3^9.5^2.7.11.13$	Fischer
Fi_{23}	$2^{18}.3^{13}.5^2.7.11.13.17.13$	Fischer
Fi_{24}	$2^{21}.3^{16}.5^2.7^3.11.13.17.23.29$	Fischer
HN	$2^{14}.3^{6}.5^{6}.7.11.19$	Harada, Norton/Smith
Th	$2^{15}.3^{10}.5^3.7^2.13.19.31$	Thompson/Smith
B	$2^{41} \cdot 3^{13} \cdot 5^6 \cdot 7^2 \cdot 11 \cdot 13 \cdot 17 \cdot 19 \cdot 23 \cdot 31 \cdot 47$	Fischer/Sims, Leon
M	$2^{46}.3^{20}.5^9.7^6.11^2.13^3.17.$	
	19.23.29.31.41.4759.71	Fischer
J_1	$2^3.3.5.7.11.19$	Janko
O'N	$2^9.3^4.5.11.19.31$	O'Nan
J_3	$2^7.3^5.5.17.19$	Janko/Higman, Mckay
Ly	$2^8.3^7.5^6.7.11.3137.67$	Lyon/Sims
Ru	$2^{14}.3^3.5^37.13.29$	Rudvalis/Conway, Wales
J_4	$2^{21}.3^3.5.7.11^3.23.29.31.37.43$	Janko/Norton

From the table, by considering the orders, the only groups with Sylow 3-subgroups of order 9 are M_{11} , M_{22} , M_{23} and HS. M_{11} is too small to contain H so is out. This leaves us with M_{22} , M_{23} and HS.

Considering maximal subgroups, M_{22} contains $L_3(4)$ $2^4 : A_6 A_7$ and 4 other groups of order less than $|A_7|$ as maximal subgroup as shown in [2] page 39. The order of $2^4 : A_6$ is 5760, orders of A_7 and the 4 other groups are too small for them to contain an isomorphic

copy of A_8 . The group $L_3(4)$ has order 2160 which equal to $|A_8|$. Let $S \in Syl_2(L_3(4))$. Then

$$\left\{ \left(\begin{array}{rrrr} 1 & 0 & 0 \\ a & 1 & 0 \\ c & b & 1 \end{array} \right) | a, b, c \in GF(4) \right\}$$

Let

$$A = \begin{pmatrix} 1 & 0 & 0 \\ a & 1 & 0 \\ c & b & 1 \end{pmatrix}, B = \begin{pmatrix} 1 & 0 & 0 \\ a' & 1 & 0 \\ c' & b' & 1 \end{pmatrix}$$

Then

$$AB = \begin{pmatrix} 1 & 0 & 0 \\ a+a' & 1 & 0 \\ c+c'+bb' & b+b' & 0 \end{pmatrix}$$

and

$$[A,B] = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ b'a - ba' & 0 & 1 \end{pmatrix} \in Z(S).$$

So cl(S) = 2.

On the other hand, $T = \langle (13)(24), (57)(68), (12)(56), (15)(26)(37)(48) \rangle$ is a Sylow 2-subgroup of A_8 . Let $\sigma = (13)(24), \tau = (12)(56)$ and $\varrho = (15)(26)(37)(48)$. Then $[\sigma, \tau] = (13)(24)(23)(14) =$ (12)(34) and $[\sigma, \tau, \varrho] = (12)(34)(56)(78)$, so $cl(T) \geq 3$. Hence $L_3(4) \ncong A_8$. This implies that M_{22} does not contain an isomorphic copy of A_8 as none of its maximal subgroups contains an isomorphic copy of A_8 .

The group M_{23} contains A_8 as a maximal subgroup, but the elements of order 3 in M_{23} have only one conjugate class from [2], page 71. Hence the elements x and xy become fused in the bigger group M_{23} ; so that M_{23} does not satisfy the hypothesis of the theorem.

The Higman-Sims group HS contains S_8 as a maximal subgroup, as is shown in [2] page 80, so HS contains A_8 inside S_8 . This

implies $C_G(x) \not\subseteq A_8$, hence HS does not satisfy the hypothesis put on G.

Hence, G is not a sporadic group.

Proposition 3 The finite simple group G is not one of the Chevalley groups, other than $L_4(2) \cong A_8$ or SL(5,2).

Proof. The list and orders of the finite simple groups are given explicitly in pages 239 through 242 in [2]. The Chevalley groups are listed, and upon checking their orders, the only ones with orders divisible by $|A_8|$, apart from A_8 and SL(5,2), and have a Sylow 3-subgroup of order 9 are:

CHEVALLEY GROUPS OF ORDERS DIVISIBLE BY $|A_8|$, APART FROM A_8 AND SL(5,2), WITH SYLOW-3 SUBGROUP OF ORDER 9.

Group	Order
$L_2(2^6)$	$2^6.3^2.5.7.13$
$S_4(7)$	$2^8.3^2.5^2.7^2$
$L_3(16)$	$2^{12}.3^2.5^2.7.13.17$
$S_4(13)$	$2^{6}.3^{2}.5.7^{2}.13^{4}.17$
$U_{4}(7)$	$2^{10}.3^2.5^2.7.11^6.19.61$
$L_4(11)$	$2^7.3^2.5^3.7.11^6.19.61$
$U_{5}(7)$	$2^{15}.3^2.5^2.7^{10}.11.19.43$

The group $L_2(2^6)$ has cyclic Sylow 3-subgroups of order 9, hence it does not satisfy the hypothesis that the group we consider has an elementary Abelian Sylow 3-subgroup P.

Every two elements in $SL_3(2^4)/Z(SL_3(2^4))$ of order 3 are conjugate, being similar to a diagonal matrix

$$\left(\begin{array}{ccc}
\lambda^{-1} & 0 & 0\\
0 & \lambda & 0\\
0 & 0 & 1
\end{array}\right)$$
(1)

where $\lambda \in GF(2^4)$ is a primitive root of unity.

Let $Q \in Syl_3(SL_3(2^4))$. Then Q is extra-special of exponent 3 and order 3^2 , and Q is a conjugate of

$$\left\langle \left(\begin{array}{ccc} \lambda^{-1} & 0 & 0\\ 0 & \lambda & 0\\ 0 & 0 & 1 \end{array} \right), \left(\begin{array}{ccc} 0 & 1 & 0\\ 0 & 0 & 1\\ 1 & 0 & 0 \end{array} \right) \right\rangle.$$
(2)

So $L_3(2^4)$ has only one conjugate class of elements of order 3.

Let V be the 4-dimensional vector space over GF(11). If $x \in SL_4(11)$ and |x| = 3, then either $\dim[V, x] = 2$ and [V, x] is an irreducible $\langle x \rangle$ – module, or V is the sum of two 2-dimensional irreducible $\langle x \rangle$ -modules. In the first case,

$$C_{SL_4(11)}(x)$$

contains a subgroup of $SL_2(11)$. In the second case,

$$C_{GL_4(11)}(x) \cong GL_2(11^2).$$

In either case, centralizers of elements of order 3 in $SL_4(11)$ have orders divisible by 11. This carries over to $L_4(11)$, so that $L_4(11)$ does not satisfy the hypothesis that $C_G(x) \leq H$ which is isomorphic to A_8 .

Let $G \in \{S_4(7), S_4(13), U_4(7), U_5(7)\}$. We know that, from [8], Theorem 8.8, $U_2(q) \cong L_2(q) \cong SL_2(q)$. Letting $q \in \{7, 13\}$, the groups $Sp_4(q)$, $SU_4(q)$ and $SU_5(q)$ respectively all have a subgroup $U \cong SL_2(q) \times SL_2(q)$ which contains a full Sylow 3-subgroup. This implies that $C_G(x)$ contains a subgroup of $L_2(q)$ whenever $x \in G$ and |x| = 3. This makes $C_G(x) \nleq H$ isomorphic to A_8 , eliminating these groups. This completes the proof of the proposition.

The proof of the theorem is complete as we have shown that the finite simple group G satisfying the hypotheses of the theorem is either A_8 or SL(5,2) by applying the results in The Atlas of Finite Simple Groups, [2].

Corollary 4 Let G be a finite group containing a subgroup H with $H \cong A_8$ such that G satisfies the 3-cycle property. Then G is isomorphic Q.L, an extension of an elementary Abelian 2-group Q by a group L isomorphic to A_8 or SL(5,2).

Proof. Using the similar argument and results as in Corollary 6.2, with

$$\overline{G} = G/O_{3'}(G);$$

and $H \leq G$ with $H \cong A_8$. Then $\overline{H} \leq \overline{G}$. By Theorem 5.3, $O_{3'}(G) = F(G)$ and \overline{G} is non-Abelian simple group. We have $\overline{H} \leq \overline{G}$, $C_G(\overline{x}) \leq \overline{H}$ and \overline{x} is not conjugate to \overline{xy} in \overline{G} . By Theorem 8.1, $\overline{G} \cong A_8$ or $\overline{G} \cong SL(5,2)$. This means that $G/F(G) \cong A_8$ or $G/F(G) \cong SL(5,2)$. Any element of order 3 in A_8 lies in a subgroup isomorphic to A_5 , and A_5 acts on the group F(G) with the element of order 3 acting fixed-point-freely. By Stewart's result, (Theorem 4.7), F(G) is an elementary Abelian 2-group Q. Whence, $G/Q \cong A_8$ or $G/Q \cong SL(5,2)$. This implies $G \cong Q.A_8$ or $G \cong Q.SL(5,2)$, an extension of an elementary Abelian 2-group Q by either A_8 or SL(5,2).

References

- [1] M. Aschbacher, *Finite Group Theory*, Cambridge University Press, 1986.
- [2] J.M. Conway, R.T. Curtis, S.P. Norton, R.A. Parker and R.A. Wilson, Atlas of Finite Simple Groups, Claredon Press-Oxford, 1985.
- [3] N. Bryson, Characterization of Finite Simple Groups With Abelian Sylow 3-subgroup of Order 9, D.Phil Thesis, Oxford University, 1974.
- [4] W. Feit, J. Thompson, Finite Groups which Contain a Self-Centralizing Cycle of Order 3, Nagoya Math. J. 21-22 (1962), 185-197.
- [5] G. Glauberman, Central Elements in Core-Free Groups, J. Algebra 4 (1966), 403-419.
- [6] D. Gorenstein, *Finite Groups*, Harper and Row Publishers, New York, 1968.
- [7] G. Higman, Odd Characterization of the Finite Simple Groups, Lecture Notes, Univ. of Michigan, 1968.
- [8] B. Huppert, Group Theory 1, Band 134 Springer-Verlang Berlin-New York, 1967.
- [9] A. Liggonah, Character of A_n , for n = 5, 6 by 3-Centralizers, Int. Sci. Technol. J., vol3, Issue 1, 2014
- [10] A. Liggonah, A Weak Embedding Property of A₇, J. Algebra, 48(1977), 47-57
- [11] G. Mullineux, Characterization of A_n by Centralizers of 3-cycles, Q. J. Math. Oxford (2), 29 (1978), 263-279.

A.A.Ligonnah /ISTJN 2014, 4:51-61.

Characterization of A_8 by 3-Centralizers

- [12] Stephen D. Smith and P. Tyrer, On Finite Groups With Certain Sylow Normalizer, I, II, J. Algebra 26 (1973), 343-364, 366-367.
- [13] W. B. Stewart, Groups Having Strongly Self-centralizing 3-Subgroups, Proc. Lond. Math. Soc. 26 (1970), 653-680.