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Abstract

The knowledge of fuzzy sets and systems has become a considerable aspect to apply in various mathematical systems.
In this paper, we apply a knowledge of fuzzy sets to group structures. We consider a fuzzy subgroups of finite abelian
groups, denoted by G = Zpn +Zqm , where Z is an integer, p and q are distinct primes and m,n are natural numbers.
The fuzzy subgroups are classified using the notion of equivalence classes. In essence the equivalence relations of
fuzzy subsets X is extended to equivalence relations of fuzzy subgroups of a group G. We then use the notion of flags
and keychains as tools to enumerate fuzzy subgroups of G. In this way, we characterized the properties of the fuzzy
subgroups of G. Finally, we use maximal chains to construct a fuzzy subgroups-lattice diagram for these groups of G.
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1 Introduction
Since the notion of fuzzy sets was introduced by Zadeh in 1965 (see [24]), there have been attempts to extend useful
mathematical notions to this wider setting replacing sets by fuzzy sets (see also [8], [12] and [13]). Another important
development was the study of finite abelian groups in the field of Algebra with relation to fuzzy sets. A major
significance in dealing with fuzzy sets can be achieved through a principle of working with fuzzy (real) numbers. The
basic arithmetic operations involving fuzzy number allow us to exercise the operations between them. Many laws
that hold for the arithmetic of real numbers also hold for the fuzzy intervals, but the distribution property holds only
when restricted. We assume that if we use the extension principle then we can apply many operations to this new
mathematical system. In this regard, there are many forms of fuzzy numbers that are associated with the following
formats: sine numbers, bell shape, polygonal, trapezoids, and triangular.

The paper focus on a system that classify the fuzzy subgroups of a finite abelian group G. This is an extension
that relates two things with common features. In some of the exsting literatures (see for instance [23] and [22])
isomorphism was appropriate to use for classification. However, in the paper [13], Murali and Makamba disputed that
fact and proposed that equivalence relation is much appropriate. Equivalence relations provide a conducive setting
for classifying fuzzy subgroups of a group G. In his paper, Denga [5], extend the discussion under which equivalence
relation of fuzzy sets is quantified by their level sets. Therefore, the use of equivalence relation facilitate fuzzy
subgroups of finite abelian groups to be classified in some special cases. In this paper, we contribute to the debate
by applying this notion to an abelian group G = Zpn +Zqm which is an extention of some ground work pioneered
by Murali, Makamba and Ngcibi (see for intance [13], [14], [12] and [19]). In their paper [15], they considered a
finite abelian group of the form G = Zp, where p is a prime. In this case they classify fuzzy subgroups of this p -
group. Furthermore, they considered a group of the form G = Zpn +Zq, where p and q are distinct primes and n
is any natural number. In another direction Ngcibi [19] conducted research on fuzzy subgroups of G = Zpn +Zpm .
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These information serves as the fundamental basis for the equivalence of fuzzy subgroups of a finite abelian group
G. Our discussion extend this by considering two distinct primes p and q, whose power is n and m, respectively. The
discussion on equivalence relations of fuzzy subgroups of a group G and its equivalence relations of fuzzy subgroups
of a group G is strengthen with the notion of flags and keychains projected as tools for enumerating fuzzy subgroups
of G. The flags and keychains are essential for the characterization of the properties of the fuzzy subsets of a set X.
These keychains represent the equivalence classes of the fuzzy subsets (see Murali and Makamba [16]). Then, we
use maximal chain to construct a fuzzy subgroup-lattice diagrams for the groups of G. This is essential for ordering
items with a desire to achieve ordered patterns. Hence subgroups on the lattice is arranged according to the number of
elements they occupy (see for more information [8]). The main aim with lattice - diagram is to ascertain the nature of
meet and join of fuzzy subgroups. Finally, we give some of the valuable contributions in the literature of classifiying
fuzzy sets, are the notable work in [5], [4] and [20].

1.1 Main Questions and Article Outline

In this subsection, we pose the main questions and provide an outline of the article.

1.1.1 Main Questions

In this article on classification of fuzzy subgroups of finite abelian group, we answer the following questions.

Question 1.1 Can we classify the fuzzy subgroups of a finite abelian group using equivalence relations?

Question 1.2 Can we use flags and keychains to characterize the fuzzy subgroups of a group G?

1.1.2 Article Outline

The rest of the paper is organized as follows. Section 1 provides introductory remarks and also related literature.
The notion of fuzzy sets and systems is given in Section 2.1. Issues pertaining to finite abelian groups and their
properties are discussed in Section 2.2. Section 3 provides the fundamental part of the discussion with equivalence
relations. These equivalence relations are used to classify the fuzzy subgroups of a group G. The classification of
fuzzy subgroups of G is discussed in Section 4. Finally, we provide the discussion, concluding remarks and future
directions for the paper in Sections 5 and 6, respectively.

2 Preliminaries

2.1 Fuzzy Sets and Systems
2.1.1 Fuzzy Sets

In this Subsubsection, we discuss fuzzy sets and operations with them. In order to differentiate between crisp sets
and fuzzy sets, we consider M = {ai|1 ≤ i ≤ 10} where ai are members of a class X of object. We represent M with
characteristic function, i.e. ∀x ∈ X

∆M(x) =
{

1, i f x ∈M,
0, otherwise. (2.1)

Definition 2.1 A fuzzy set of X is a pair (X ,µ) where I = [0,1]. We shall denote by IX the class of fuzzy subsets of X.

Suppose that x ∈ X , then 0≤ µA(x)≤ 1 is called the degree of membership of X to the fuzzy subset A of X. If µA(x) =
1, then x belongs to A absolutely. In case µA(x) = 0, then x does not belong to A absolutely. However, if µA(x) takes
only {0,1}, ∀x ∈ X , then A is called a crisp set.
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Definition 2.2 A partition is a kernel of fuzzy sets if that partition of X whose blocks consists of elements with the
same membership is a collection of elements in the Universe discourse of X, of equal membership values.

Definition 2.3 A fuzzy set A of X, whose membership function is defined by

µA(x) =
{

λ , i f x = a,
0, otherwise, (2.2)

where 0 < λ < 1, is called a fuzzy point of X.

If λ = 1, then one would have a crisp set. We denote a fuzzy point by aλ . Also an empty fuzzy set is the one whose
membership value is 0, for all x ∈ X .

2.1.2 Alpha - cuts

In this Subsubsection, we discuss about weak alpha - cuts and strong alpha - cuts. Consider A to be a fuzzy subset of
X, and α ∈ [0,1]. Then, we define a weak α - cut as

A≥α = {x ∈ X |µA(x)≥ α}. (2.3)

Similarly, we define a strong α - cut as

A>α = {x ∈ X |µA(x)> α}. (2.4)

2.1.3 Operations with fuzzy sets

In this Subsubsection, we discuss about fuzzy sets operations and relate them to the notion of α - cuts.

Let A and B be two fuzzy sets, then we define the union of two fuzzy sets as

µA∪B(x) = max{µA(x),µB(x)}= µA(x)∨µB(x). (2.5)

The intersection of two fuzzy sets A, B and the complement of the fuzzy set A, denoted by Ac (relative to X) are
defined by

µA∩B(x) = min{µA(x),µB(x)}= µA(x)∧µB(x),∀x ∈ X , (2.6)

µA(x) = 1−µA(x),∀x ∈ X ,respectively. (2.7)

We relate the above operations with the weak α - cut as below, however the relation with strong α - cut is worked out
in a similar fashion.

(A∩B)≥α = A≥α ∩B≥α , (2.8)

(A∪B)≥α = A≥α ∪B≥α , (2.9)

(Ac)≥α = A≤1−α = {x ∈ X |µA(x)≤ 1−α}. (2.10)
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2.1.4 Inclusion for fuzzy sets

Take two fuzzy subsets A and B of X. We call A a subset of B, denoted by A⊂ B⇔ the membership degree µA(x) is
never greater than the membership degree µB(x), i.e.

A⊆ B⇔ µA(x)≤ µB(x), for all x ∈ X . (2.11)

2.1.5 Fuzzy numbers and their Intervals

In this Subsubsection, we introduce the definition and notations of fuzzy numbers and their intervals. Let F(X) be the
class of all fuzzy subsets of the Universe of discourse X and fuzzy (real) numbers, F(X) are imprecise values in the
interval [0,1].

Definition 2.4 A fuzzy set A∈ F(X) is called a fuzzy (real) number, if and only if A is convex and if there exists exactly
one real number a with µA(a) = 1.

The shape of membership functions of fuzzy numbers are convex and we define a convex relation to fuzzy numbers as
follows.

Definition 2.5 A fuzzy number A ∈ F(X) is called convex, if and only if all (strong) α - cuts of A are intervals, i.e.
themselves convex sets in the usual sense.

In case of “ betweenness”, we have a notion of interval [a,b] with end points a,b, so that if c ∈ [a,b] then µA(c)≥
min{µA(a),µA(b)}. Therefore, when A is only convex and normal then A is called a fuzzy interval.

2.2 Finite abelian groups

This Section provides a brief background about finite abelian groups, definitions as well as the theory necessary for
what is to follow.

2.2.1 Cyclical groups of any finite order

Let G be a group and a ∈ G . The set < a > = {a ∈ G|n ∈ Z} is called cyclic subgroup generated by a. The group G
is called a cyclic group if there exist an element a ∈ G such that G = < a >. In this case a is called a generator of G.
A group G is abelian if ab = ba for all a,b ∈ G. Cyclic groups are abelian, but the converse is not true. The following
proof shows that all cyclic groups are abelian:
Let G be a cyclic group and a be a generator of G. Take c,d ∈G. Then there exist x,y ∈ Z such that c = ax and d = ay.
Since cd = axay = ax+y = ayax = dc, then, G is abelian.

Definition 2.6 The order of a finite group is the number of its elements, while the order of an element a ∈G is the
smallest positive integer n such that an = e.

If the subgroup H = < a > from the definition is finite, and an = am for n,m ∈ N and n > m, then an.a−m = am.a−m.
Therefore an−m = e. Furthermore, if n > m and the subgroup < a > is finite, the set of integers Z = {n ∈N : an = e} is
non empty, by Well Order Principle, there is at least a positive integer r such that ar = e. Therefore o(a) = r such that
< a > = {a0 = e,a,a2, · · · ,ar−1}.

Proposition 2.7 Let G be a finite cyclic group with 0(G) = n be a finite number. If d|n, then there exists exactly one
subgroup of G of order d.

Subgroups of a cyclic group are cyclic and all groups of prime order are cyclic. A simple group is a group whose only
normal subgroups are the trivial group of order 1 and an improper subgroup consisting of the entire original group.

Definition 2.8 The following argument shows that all cyclic groups are simple if and only if the number of its elements
is a prime. The simplest abelain groups are the cyclic groups of order n = 1 or of a prime order p.
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2.2.2 Isomorphism

Isomorphism allows us to treat certain groups as being alike.

Definition 2.9 Let G be a group with operation ? and let H be a group with operation •. An isomorphism of G onto
H is a mapping θ : G→ H that is one - to - one, onto and also satisfies

θ(a?b) = θ(a)•θ(b) (2.12)

for all a,b ∈ G.

The following theorem shows that any group isomorphic to an abelian group must also be abelian.

Theorem 2.10 If G and H are isomorphic groups and G is abelian, then H is abelian.

Proof.
We define the operation on G to be ? and on H to be •, respectively. And we set θ : G→ H to be an isomorphism.
Then for all x,y ∈ H, there are elements a,b ∈ G such that θ(a) = x and θ(b) = y.

Since θ preserves the operation and G is abelian,

x• y = θ(a)•θ(b) = θ(a?b) = θ(b?a) = θ(b)•θ(a) = y• x. (2.13)

This shows that H is abelian.

2.2.3 Equivalence relation on groups

In this study we discuss a connection between groups.

The binary relation ∼ on A is said to be an equivalence relation on A if for all a,b,c, in A

1. a ∼ a
2. a∼ b→ b∼ a
3. a∼ b and b∼ c→ a∼ c

The first of these three properties is called reflexivity, the second symmetry and the third transitivity.

When working with an equivalence relation on a set A, it is often useful to have a complete set of equivalence class
representatives.

2.2.4 Equivalence class

Definition 2.11 If A is a set and ∼ is an equivalence relation on A, then the equivalence class of a ∈ A is a set
{x ∈ A|a∼ x}.

We denote the equivalence class containing a by [a].

2.2.5 Cyclic groups and its rank

Definition 2.12 A rank is defined as the cardinality of the largest set of linearly independent elements of the group.

The integer and rational numbers have rank one, as well as every subgroup of the rationals.

The proposition below give rise to a condition that a finite abelian group can be expressed as a direct product of its
Sylow p - subgroups.
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Proposition 2.13 Let G be a finite abelian group. Then G is isomorphic to a direct product of cyclic groups

Zn1×Zn2×·· ·×Znk,

such that ni|ni−1 for i = 2, 3, · · · ,k.

2.2.6 Fundamental theorem of finite abelian groups

For each non zero finite abelian group G, there is exactly one list m1,m2, · · · ,mk of integers mi > 1, each a multiple of
the next, for which there is an isomorhism

G = Zm1⊕·· ·⊕Zmk.

In this description, the first integer m1 is the least positive integer m = m1 with mG = 0, while the product m1m2 · · ·mk

is the order of G.

2.2.7 Lattice

In this Subsection, we discuss about lattice of subgroups.

2.2.8 Lattice of Subgroups

Definition 2.14 (S,≤) is a lattice if and only if (S,≤) is a partially ordered set and each pair of elements x,y ∈ S,
{x,y} has a least upper bound and a greatest lower bound.

The book by P. Crawley and R.P. Dilworth on the algebraic theory of lattices defines a sublattice, which is a non empty
subset M of a lattice L which is a sublattice of L if x∨ y, x∧ y ∈ M, and x,y ∈ M where ∧ is the meet and ∨ is the
joint. If we speak of a homomorphism, which is a mapping f of lattice L to a lattice M, then for all x,y ∈ L, f (x∨ y)
= f (x)∨ f (y) and f (x∧ y) = f (x)∧ f (y).

2.2.9 Complete Lattice

Definition 2.15 A complete lattice L is a partially ordered set (poset) in which every subset has a least upper bound
and a greatest lower bound.

Consequently, a complete lattice contains top element (1 = ∨L) and bottom elements (0 = ∧L).

The following result describes some properties of subgroup lattices in general. Let G be a group. Then (L(G),⊆) is a
lattice.

The theorem below gives a subgroup-lattice characterization of groups.

Theorem 2.16 If G is a group such that

L(G)∼= L(Zpn ×Zqm), then G∼= Zpn ×Zqm .

3 Equivalence Relations
In this Section we discuss equivalence relations on fuzzy subsets and fuzzy groups. The equivalence relations provide
a setting for classifying the fuzzy subgroups of G.

99



F. Gideon /ISTJN 2013, 2:94-111. Classification of Fuzzy Subgroups of Finite Abelian Groups

3.1 Equivalence relation on fuzzy subsets

In this Subsection, we provide a definition for equivalence relation and also their properties.

Definition 3.1 We define an equivalence relation ∼ on IX , where I = [0,1] and X is a set defined by

µ ∼ ν if and only if (3.14)

1. for all x,y ∈ X, µ(x)> µ(y)⇔ if ν(x)> ν(y).

2. µ(x) = 0⇔ ν(x) = 0.

3. µ(x) = 1⇔ ν(x) = 1.

Part 1 in defintion (3.1) is straight forward. However, Part 2 is important for the equivalence relation application and
we justify it in the example below.

Example 3.2 Consider X3 = {ω,s,s2, t,st,s2t}, and define two fuzzy subsets β and β .

β (x) =


1, i f x = ω,
1
2 , i f x = s,s2,
1
3 , otherwise.

(3.15)

β (x) =


1, i f x = ω,
1
2 , i f x = s,s2,
0, otherwise.

(3.16)

Then Supp β 6= Supp β , i.e. 1
3 6= 0, meaning that condition 2 is not satisfied, while the rest of the conditions are

satisfied for all x ∈ X . Thus β ∼ β .

In this paper, an equivalence class containing µ is denoted by [µ], with respect to the relation above. The following
proposition in [20] establishes that∼ is an equivalence relation on τL(x), the collection of all fuzzy subsets on X whith
co-domain is L, a lattice. L is a partially ordered set with unique least upper bounds and greatest lower bounds.

Proposition 3.3 (Seselja and Tepavcevic, [20])
The relation ∼ is an equivalence relation on τL(x).

In the example below we illustrate that the converse of the proposition is not true.

Example 3.4 Let Z3 = {ω,s,s2, t,st,s2t}, and the fuzzy subsets β and β are defined as:

β (y) =


1, i f y = ω,
1
2 , i f y = s,
1
3 , otherwise.

(3.17)

β (y) =


1, i f y = ω,
1
2 , i f y = s, t,
0, otherwise.

(3.18)

From the above you can see that the images and support of two fuzzy subsets are equal, so β (s)> β (st), then β (st)≯
β (st)⇒ β � β .

The proposition below highlights the fact that if the α - cuts of two distinct fuzzy subsets are equal, then the relation
defined in definition 3.1 holds between those two fuzzy subsets.

Proposition 3.5 (Murali and Makamba, [13])
Let β and β be two fuzzy subsets of X. Suppose that for each l > 0 there exists k > 0 such that β l = β

k
. Then β ∼ β .
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3.2 Flags and keychains

In this Subsection we provide definitions for flags and keychains. Flags and keychains are used to characterize the
properties of fuzzy subsets of X. In this subsection we fix n.

3.3 Flags

Definition 3.6 A flag ♠ on a set X is a maximal chain of subsets of X such that X0 ⊂ X1 ⊂ ·· · ⊂ Xn = X.

The maximal chains are given by permutations of the elements of X. The subsets of X are permuted into n and the
length of the maximal chain of X is (n+1).

3.4 Keychains

Definition 3.7 An n - chain is called a keychain if 1 = β 0 ≥ β 1 ≥ β 2 ≥ ·· · ≥ β n ≥ 0. We denote a keychain by ♣.

The β
′
is are called pins. The pins that are interlocked are called components. In our case ” 1” is not a component and

a keychain with k - distinct components is called a k-pad, where (1≤ k≤ n). The β
′
is are classfied either by ” = ” or ”

> ”.

Example 3.8 Consider
1. 1 > β 1 = β 2 > β 3 = β 4 = β 5 > β 6 > 0.

We have 4 - pads keychain of a 7 - chain.

2. 1 = β 1 = β 2 = β 3 > β 4 > β 5 = β 6 = β 7.

We have 3 - pad keychain of a 7 - chain.

Definition 3.9 A paddity of a component is the number of pins found in the interlocked position forming the compo-
nent.

In Example 3.8(1) above, we see that the paddities of the components are 2,3, and 1.

Definition 3.10 The index of a k - pad keychain is the set of paddities of various components of the keychain in which
singleton components are ignored for the sake of simplicity.

From Example 3.8(1) above, the partition of 7 given by 2+3+1+1 corresponds to a 4 - pad keychain whose index is
(2,3).

Definition 3.11 A pinned - flag is a pair consisting of a flag ♠ and a keychain ♣.

The α - cuts (0≤ α ≤ 1) of fuzzy subsets belonging to the same equivalence class can be represented as pinned - flag.
We construct a fuzzy subset µ on X corresponding to a pinned - flag on X as

01 ⊂ Xβ 1
1 ⊂ ·· · ⊂ Xβ n

n (3.19)

in the following manner:

µ(y) =


1, i f x = 0,
0, i f x ∈ X1 \{0},
...
β n i f x ∈ Xn \Xn−1.

(3.20)

In the following proposition Murali and Makamba ([13]) discuss conditions of pinned - flags corresponding to two
fuzzy subsets with equivalent relations.
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Proposition 3.12 (Murali and Makamba, [13])
Suppose the pinned - flags corresponding to two fuzzy subsets β and β , are

(♠β ,♣β ) : P1
0 ⊂ Pλ1

1 ⊂ ·· · ⊂ Pλn
n , (3.21)

and

(♠
β
,♣

β
) : Z1

0 ⊂ Zσ1
1 ⊂ ·· · ⊂ Zσm

m , (3.22)

where the λi and the σi are all distinct. Then β ∼ β on X⇔:

(i) n = m,
(ii) Pi = Zi for i = 0, 1, · · · ,n,
(iii) λi = λ j⇔ σi = σ j for all 1≤ i, j ≤ n and λk = 0⇔ σk = 0 for some 1≤ k ≤ n.

The proposition clarifies that the two pin flags are related.

3.5 Equivalence of fuzzy points

In this Subsection, we state the relationship between equivalent fuzzy subsets and equivalent fuzzy points. We look at
the results given by distinct keychains relative to equivalence of fuzzy points. In this case, we take a chain of fuzzy
subsets by specifying a crisp point from the chain and obtain distinct keychains that are being hosted by the crisp
point.

Example 3.13 Let g ∈ Z such that

Z0 ⊂ {y} ⊂ Z. (3.23)

From the above we can deduce about seven different keychains and they represent the equivalence classes of fuzzy
subsets. In the example below we discuss the nature of a fuzzy point belonging to a fuzzy subset under the defined
equivalence.

µ(y) =


1, i f y = y,
1
2 , i f y = y2,
1
3 , otherwise.

(3.24)

ν(y) =


1, i f y = y,
1
4 , i f y = y2,
1
5 , otherwise.

(3.25)

We can deduce that µ(y)> µ(x)⇔ ν(y)> ν(x), for x,y ∈ X and Supp µ = Supp ν . So, µ ∼ ν , but the fuzzy point yλ
2

for 1
2 > λ > 1

3 belongs to µ and fails to belong to ν .

The notion of fuzzy points and fuzzy points belonging to fuzzy subsets did prove very useful to the study of equivalence
of fuzzy subsets. In light with this Murali and Makamba, [13], came up with a definition of a fuzzy point belonging to
an equivalent class of fuzzy subsets in terms of pinned-flags which is more useful to the study of equivalence of fuzzy
subsets of X.
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Definition 3.14 Suppose, (♠µ ,♣µ) is the pinned - flag corresponding to an equivalence class of fuzzy subset [µ] given
by

(♠µ ,♣µ) : X1
0 ⊂ Xλ1

1 ⊂ ·· · ⊂ Xλn
n . (3.26)

Then, we say an equivalence class of fuzzy point [aλ ] belongs to [µ] if and only if 0 < λ ≤ λi < 1, where 0 < i≤ n is
the least index with the property a ∈ Xi, but a /∈ Xi−1.

The framework on equivalence of fuzzy subsets of X creates enabling conditions which allows us to study the equiva-
lence of fuzzy subgroups of G.

3.6 Equivalence of fuzzy subgroups of G

In this subsection e is the identity of the group G = Zpn +Zqm , where p,q are primes and n,m are natural numbers.
The main focus of this subsection is to study the fuzzy subgroups of finite abelian groups.

Definition 3.15 Two fuzzy subgroups µ and ν of G are equivalent and we write µ ∼ ν ⇐⇒
(i) for all x,y ∈ G, µ(x)> µ(y)⇐⇒ ν(x)> ν(y) and
(ii) µ(x) = 0⇐⇒ ν(x) = 0.

The proposition below set a framework for characterizing the maximal chains of the fuzzy subgroups of a group G.

Proposition 3.16 If, in a group G, the length of the longest maximal subgroups chain with end-points {e} and G is n,
then the order of any fuzzy subgroup of G cannot be greater than n+1.

With the aid of the above proposition, we consider the structure of maximal chains of the fuzzy subgroups of G.

3.7 Maximal chains of subgroups of G

The linear ordering of the lattice of subgroups provide a way of characterizing maximal chains in G. Here we permute
n+m objects of which n of them identical objects say p p p · · · p and m of them are identical objects
say q q q · · · q.

Let us consider a general case with pnqm, we can list

o p p p · · · p︸ ︷︷ ︸
n

q q p · · · q︸ ︷︷ ︸
m

. (3.27)

The above listing gives rise to the following proposition.

Proposition 3.17 The list of orders of subgroups of G gives rise to the following maximal chain

{0} ⊂ Zp ⊂ Zp2 ⊂ ·· · ⊂ Zpn ⊂ Zpnq ⊂ ·· · ⊂ Zpnqm ∼= G, (3.28)

where p and q are distinct primes while, m and n are two fixed positive integers.
Proof.
Suppose there is a subgroup H of G whose order is d, such that Zpi ⊂ H ⊂ Zpi+1 , for some 0 ≤ i ≤ n− 1. Then by
Langrage theorem, d|pi+1. This means d = pi for some j < i+1. Also, Zpi ⊂H⇔ pi|d. This implies that i < j < i+1.
This is a contradiction.

Similarly, if we insert H anywhere else in the equation, then the claim given by equation (3.28), holds the same
conclusion. So the list of orders of subgroups of G gives rise to the above mentioned maximal chain.

103



F. Gideon /ISTJN 2013, 2:94-111. Classification of Fuzzy Subgroups of Finite Abelian Groups

In the even of permuting subgroups of G various maximal chains are attainable as

0 p p p · · · p q q q · · · q. (3.29)

If we shift p′s and q′s around we obtain other permutations, i.e.

0 p q · · · p q p · · ·q. (3.30)

By symmetry we can swop p′s and q′s without affecting the number of maximal chains. Consider the following
maximal chain

{0} ⊂ H1 ⊂ H2 ⊂ ·· · ⊂ Hn+m = G. (3.31)

From the above we deduce the following subgroup orders

1|d1|d2| · · · |dn+m = pnqm. (3.32)

Therefore each di must be of the form piqi, where i ≤ i1 ≤ n and 0 ≤ i2 ≤ m. It is easy to see that {0} cannot be
permutated, however for G = Zpn +Zqm , we can permute it by (n+m)!

n!m! . This implies that G has (n+m)!
n!m! maximal chains

and are all of the same length with (n+m+1) components.

3.8 Maximal chains of subgroups of Z72

In this Subsection, we take a specific case of G = Z72 = Z23 +Z32 with p = 2, q = 3 and n = 3, m = 2. Now Z72 and
Z23 +Z32 are isomorphic to each other. In general not all subgroups of G are comparable with respect to containment
or inclusion. Therefore the subgroups of G do not form a chain but a lattice.

We represent the subgroup - lattice diagram of G = 72 which consists of different chains of fuzzy subgroup of G below.
The group G = Z72 has the following maximal chains with the following group inclusion

{0} ⊂ Z3 ⊂ Z9 ⊂ Z18 ⊂ Z36 ⊂ Z72

{0} ⊂ Z3 ⊂ Z6 ⊂ Z12 ⊂ Z36 ⊂ Z72

{0} ⊂ Z3 ⊂ Z6 ⊂ Z12 ⊂ Z24 ⊂ Z72

{0} ⊂ Z2 ⊂ Z6 ⊂ Z12 ⊂ Z36 ⊂ Z72

{0} ⊂ Z2 ⊂ Z6 ⊂ Z12 ⊂ Z24 ⊂ Z72

{0} ⊂ Z2 ⊂ Z4 ⊂ Z8 ⊂ Z24 ⊂ Z72

{0} ⊂ Z2 ⊂ Z4 ⊂ Z12 ⊂ Z36 ⊂ Z72

{0} ⊂ Z2 ⊂ Z4 ⊂ Z12 ⊂ Z24 ⊂ Z72

{0} ⊂ Z3 ⊂ Z6 ⊂ Z18 ⊂ Z36 ⊂ Z72

{0} ⊂ Z2 ⊂ Z6 ⊂ Z18 ⊂ Z36 ⊂ Z72

From the subgroups - lattice diagram of G = Zpn +Zqm , we calculate the number of distinct fuzzy subgroups of G,
using the counting principle, for small values of n and m.
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3.9 Pinned - flag of G

We classify the fuzzy subgroups of G using keychains and various keychains are dinstinct from each other if they are
made up of different pins.

Definition 3.18 A pinned-flag of G is a pair (♠,♣) consisting of a flag of subgroups and keychains.

Given a keychain 1 λ1 λ2 · · ·λn, where the λ ′i s are not all distinct, we can construct a fuzzy subgroup µ on G
corresponding to a pinned - flag on G given by

01 ⊂ Gλ1
2 ⊂ ·· · ⊂ Gλn

n , (3.33)

as follws:

µ(x) =



1, i f x = 0,
λ1, i f x ∈ Z1 \{0},
λ2, i f x ∈ Z2 \Z1,
λ3, i f x ∈ Z3 \Z2,
λ4, i f x ∈ Z4 \Z3,
λ5, i f x ∈ Z5 \Z4.

(3.34)

If we take λ ,β and γ to be real numbers in the interval [0,1], such that 0 < γ < β < λ ≤ 1. With one of the maximal
chains of subgroups of G = Z72 is

{0} ⊂ Z2 ⊂ Z4 ⊂ Z8 ⊂ Z24 ⊂ Z72. (3.35)

Then a fuzzy subgroup is obtained with membership values given by

1≥ λ1 ≥ λ2 ≥ λ3 > λ4 > λ5 (3.36)

where

λ1 = λ ,λ2 = λ3 = β ,λ4 = γ and λ5 = 0. (3.37)

4 Fuzzy subgroups of G
In this section, we discuss fuzzy algebraic structure via elements.

Definition 4.1 Suppose G is a group, and µ : G→ I is a fuzzy subset of a group G, then µ is said to be a fuzzy
subgroup of G if and only if µ(ab)≥ µ(a)∧µ(b) and µ(a−1)≥ µ(a) for all a,b ∈ G.

The following proposition detailed some important properties of fuzzy subgroups.

Proposition 4.2 1. µ(a) = µ(a−1) for all a ∈ G.

2. µ(e)≥ µ(a) for all a ∈ G and e ∈ G.
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3. The α− cut µα of any fuzzy subgroup µ of G is a crisp subgroup of G for all α such that 0≤ α ≤ µ(e)≤ 1.

i. The proofs for 1. and 2. are straight forward.

ii. We have to prove that µα = {µ ∈ G : µ(g)≥ α} is a crisp subgroup of G.

(a) Fix g1,g2 ∈ µα . Then µ(g1)≥ α and µ(g2)≥ α . Therefore µ(g1g2)≥ µ(g1)∧µ(g2)≥ α ∧α = α for g1,g2 ∈G.
⇒ g1g2 ∈ µα .

(b) Furthermore for any µ(g)≥ α , µ(g−1) = µ(g)≥ α ,⇒ ”g ∈ µα ⇔ g−1 ∈ µα ”.
Therefore µα is a crisp subgroup of G.

We define the fuzzy abelian group as:

Definition 4.3 Suppose G is a group, and µ : G→ I is a fuzzy subgroup. Then µ is said to be a fuzzy abelian if µ(ab)
= µ(ba) for all a,b ∈ G.

We only know that µ(ab) ≥ µ(a)∧ µ(b) and µ(ba) ≥ µ(b)∧ µ(a), but we cannot verify that these two are equal in
general. Therefore the converse do not necessarily need to be true in general. Also µ(a2)≥ µ(a ·a)≥ µ(a)∧µ(a) =
µ(a) for all a ∈G. By induction on n, it follows that µ(an)≥ µ(e) for all a ∈G and for all positive integers n and also
for n = 0.

Theorem 4.4 Let G be a group and µ : G→ I be a fuzzy subset. Then µ is a fuzzy subgroup⇔ µ(ab−1) ≥ µ(a)∧
µ(b−1).
Proof.
By Proposition 4.2, µ(a−1) = µ(a) and µ(ab−1)≥ µ(a)∧µ(b−1) = µ(a)∧µ(b).
Conversely,

1. µ(ea−1) = µ(a−1), by Proposition 4.2(2),µ(a−1)≥ µ(a).
2.µ(ab) = µ(a(b−1)−1)≥ µ(a)∧µ(b−1)≥ µ(a)∧µ(b) since µ(b−1)≥ µ(b).

For G abelian, we can use the additive notation and the fuzzy subgroups of (G, +) can be rewritten as µ(a− b) ≥
µ(a)∧µ(b).

4.1 Level subgroups

In this Subsection, we define the level of subgroups and use them to study fuzzy subgroups of G. In this Subsection,
α - cut becomes t - cut for convinience.

Definition 4.5 Let G be a group and µ : G→ I be a fuzzy subgroup of G. The subgroup µt , t ∈ [0,1] and t,s≤ µ(e) is
called a level subgroup of µ with respect to t.

The following theorem clarifies that the level subgroups are not all distinct and therefore every level subgroup is indeed
a subgroup of G.

Theorem 4.6 Let G be a group and µ : G→ I be a fuzzy subgroup of G. Two level subgroups µt1 ,µt2(t1 < t2) of µ are
equal⇔ there is no x ∈ G such that t1 < µ(x)< t2.

Proof. Let µt1 = µt2 . Suppose there exists x ∈ G such that t1 < µ(x)< t2 then µt2 * µt2 , since x belongs to µt1 , but not
to µt2 , which contradicts the hypothesis.

Conversely, suppose there is no x ∈ G such that t1 < µ(x) < t2, with t1 and t2 as above. Since t1 < t2, we have
µt2 ≤ µt1 . Let x ∈ µt1 , then µ(x)≥ t1 and hence µ(x)≥ t2, since µ(x) can not lie between t1 and t2. Therefore x ∈ µt2 .
So µt1 ≤ µt2 . Thus µt1 = µt2 .
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4.2 Generation of fuzzy subgroups

Definition 4.7 Let G be a group and µ a fuzzy subset of G, µ 6= 0. The smallest fuzzy subgroup of G containing µ ,
denoted by < µ > is called the fuzzy subgroup of G generated by µ .

Proposition 4.8

µ
?(x) = sup

t≤sup µ

{t|x ∈< µ >}

is the smallest fuzzy subgroup of G containing µ .

Therefore µ? is indeed a fuzzy subgroup generated by µ in G, that is µ? = < µ >. In particular if µ is a fuzzy point µ

= aλ generated by aλ is denoted by < aλ >.

4.3 Cyclic fuzzy subgroups

Definition 4.9 Let G be a group and aλ a fuzzy point in G. A fuzzy subgroup µ is cyclic in G if there exists a fuzzy
point aλ such that µ = < aλ >.

Proposition 4.10 (Makamba, [12])
Let µ = < aλ > and

µ(x) =
{

λ , x ∈< a >,
0, x /∈< a >, ∀x ∈ G.

(4.38)

Then µ = ν .
Proof. Let bβ ∈ ν if ν(b)≥ β . If b = e, then e∈< a>. Hence ν(e)≥ λ ≥ β . Now µ(a)≥ λ and µ(e)≥ µ(a)≥ λ ≥ β .
So bβ = eβ ∈ µ .

Suppose b 6= e. ν(b) ≥ β > 0. Hence ν(b) = λ ≥ β and b ∈< a >. So b = am for some m ∈ Z. Therefore,
µ(b)≥ µ(a)≥ λ ≥ β . So bβ ∈ µ , a ∈< a >. By induction of µ , µ ≤ ν . Hence µ = ν .

4.4 Fuzzy abelian subgroups

In this Subsection, we define fuzzy abelian subgroups and its properties.

Definition 4.11 Let µ be a fuzzy subgroup of G. Let H = {x ∈ G|µ(x) = µ(e)}. Then µ is a fuzzy abelian if H is an
abelian subgroup of G.

The above definition is weak according to Makamba [12], he proposed a strong definition in the place of the one given
above.

Definition 4.12 Let µ be a fuzzy subgroup of G. µ is a fuzzy abelian if µ t is abelian for all t ∈ [0,µ(e)].

4.5 Lattice of fuzzy subgroups

By lattice we mean a ”partially ordered set”. This subsection provide necessary conditions to classify and illustrate
the fuzzy subgroups of G on a group-lattice diagram.
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4.6 Fuzzy substructures join

The join of a family of fuzzy subgroups of G constitute complete lattices under the ordering of fuzzy set inclusion and
form a descending chain of fuzzy sets with its least member F6(G) of the class of all fuzzy normal subgroups. That
F6(G) is a modular lattice, can be shown by construction of the fuzzy set µ ∪η ∨µ ∪η , but this has failed to indicate
for Fi(G), i 6= 1,5, that each small class is a sublattice of the large class (see for more information [1]).

The fuzzy subgroups of G can be represented by maximal chains. This representation is a way of classifying fuzzy
subgroups of G using membership values. The following example illustrates the classification of fuzzy subgroups of
G on the maximal chain. We have

{e} ⊂ (Hλ1
1 )⊂ (Hλ2

2 )⊂ ·· · ⊂ (Hλn−1
n−1 )⊂ (Hλn

n )⊂ G, (4.39)

where H ′i s are subgroups of G, the λ ′i s are values between [0,1] where i = 0, 1, · · · ,n.

4.7 Equivalence class of Fuzzy subgroups of G

In this Subsection, we discuss about the equivalence classes of fuzzy subgroups. We use the length of the maximal
chain of the subgroups to determine the equivalence classes. The proposition below provides an algebraic formulation
to determine the number of distinct equivalence classes of fuzzy subgroups of Zpn +Zqm .

Proposition 4.13 (Murali and Makamba, [15])
For any n,m ∈N, there are 2n+m+1

∑
m
r=0

1
2−r

( n
n−r

)(m
r

)
−1 where m≤ n distinct equivalence classes of fuzzy subgroups

on Zpn +Zqm ; where p and q are distinct.

The example below demonstrate that some keychains on distinct maximal chains determine the same equivalent class
of fuzzy subgroups.

Example 4.14 Let us take the following keychains 1 λ λ γ where (1 > λ > β > γ > 0) on the follwoing two
maximal chains

o⊂ p⊂ pq⊂ p2q⊂ p2q2

o⊂ q⊂ pq⊂ pq2 ⊂ p2q2

determine the same fuzzy subgroup whose pinned-flag is given by either

o1 ⊂ pλ ⊂ (pq)λ ⊂ (p2q)β ⊂ (p2q2)γ ,

or

o1 ⊂ qλ ⊂ (pq)λ ⊂ (p2q)β ⊂ (p2q2)γ ,

which can be reduced to

o1 ⊂ (pq)λ ⊂ (p2q)β ⊂ (p2q2)γ .
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4.8 Classification of Subgroups

Classification is a process of grouping items of certain similar characters together. In demonstrating a way of classi-
fying subgroups we use the notion of maximal chains as follow. Consider a maximal chain

Mµ : Zpn ⊃ Zpn−1 ⊃ ·· · ⊃ Zp ⊃ 0. (4.40)

Mµ defines a fuzzy subgroups µ of G as follows:

µ assumes λn on Zpn \Zpn−1 , λn−1 on Zpn−1 \Zpn−2 · · · , λ1 on Zp \{0} and 1 on {0}, where

1≥ λ1 ≥ λ2 ≥ ·· · ≥ λn−1 ≥ λn ≥ 0. (4.41)

If the maximal chain in equation (4.41) has a length of four components, then we have 15 distinct equivalence classes
of fuzzy subgroups on Zpn +Zqm for a specific m and n.

5 Disussion
The paper discuss about fuzzy sets, fuzzy subsets and fuzzy subgroups of a finite abelian group. We consider the
implications of equivalence relation on fuzzy sets and fuzzy subgroups. In essence we study the fuzzy subgroups of
finite abelian group. To be specific we take a cyclic group

G = Zpn +Zqm (5.42)

where p and q are two distinct prime, while n and m are fixed positive integers. G is a cyclic group of rank 2 and it
has an order u = pnqm. We can determine the subgroups of G if n and m are known. Since G is a finite cyclic group
of order o(G) = pnqm, for every divisor d of o(G), there is a unique subgroup of G of order d by a proposition in [11],
page 92. Now clearly there are (n+1)(m+1) many subgroups of G. So, in general

G = Zpn +Zqm , (5.43)

has (n+1)(m+1) = nm+n+m+1 subgroups.

The subgroups of a group G are studies by using the notion of equivalence relations. Using equivalence relation, we
classify fuzzy subgroups of finite abelian group in some special way. In fact we use equivalence relations to study
the equivalence of fuzzy subgroups of G. The group structures can be classified by assigning equivalence classes to
its fuzzy subgroups. The collection of the classes in these relation can be ordered. Furthermore the fuzzy subsets of
X are characterized through the framework of flags and keychains. The distinct fuzzy subsets of X are obtained by
interchanging the pins β ’s of a flag. The pins are allocated with their positions and the length of the chain is equal to
the number of positions available in an n - chain which in our case is n+ 1. The length of the maximal chain of the
subgroups of G is used to determine the equivalence classes of fuzzy subgroups. When

G = Zp1 + · · ·+Zpn , (5.44)

G has a length equal to n+1. Hence the number of equivalence classes of fuzzy subgroups is 2n+1−1.

6 Concluding Remarks
In this article we discuss the classification of fuzzy subgroups of a finite abelian group G. We look at possible methods
of classifying subgroups of a group. In particular, we look at the implications of equivalence relations on fuzzy
sets and extend their applicability to the notion of fuzzy subgroups. These equivalence relations provide settings for
classifying the fuzzy subgroups of G. The group structures can be classified by assigning equivalence classes to its
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fuzzy subgroups. This conditions under which the equivalence relation of fuzzy sets is equivalently described by
their level sets is an alternative method of classification. Level subgroups characterized several properties of fuzzy
subgroups in terms of level subgroups of G. For instance fuzzy subgroups were represented in the form of a chain of
level subgroups. The collection of classes in this relation can be ordered on the subgroup - lattice.

Also the relationship between equivalent fuzzy subsets and equivalent fuzzy points establish the number of distinct
keychains relative to equivalence of fuzzy points. We take a chain of fuzzy subsets by specifying a crisp point from
the chain and obtain distinct keychains that are being hosted by the crisp point. We construct a fuzzy subgroups using
lattice diagrams and form a subgroup - lattice of fuzzy subgroups of finite abelian group G = Zpn +Zqm and show how
these satisfy the group structures together with their equivalence relations. This lead to the formation of various types
of lattices and sublattices of fuzzy substructures of a group. The lattice will have more influence on further studies of
fuzzy subgroups of finite abelian groups.
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